Стекла. Классификация. Применение. Достоинства и недостатки.

Стекло́ — вещество и материал, один из самых древних и, благодаря разнообразию своих свойств, — универсальный в практике человека. Физико-химически — неорганическое вещество, твёрдое тело, структурно — аморфно, изотропно; все виды стёкол при формировании преобразуются в агрегатном состоянии — от чрезвычайной вязкости жидкого до так называемого стеклообразного — в процессе остывания со скоростью, достаточной для предотвращения кристаллизации расплавов, получаемых плавлением сырья. Температура варки стёкол, от 300 до 2500 °C, определяется компонентами этих стеклообразующих расплавов (оксидами, фторидами, фосфатами и др.) . Прозрачность (для видимого человеком спектра) не является общим свойством для всех видов существующих как в природе, так и в практике стёкол.

Природное стекло, будучи одним из первых естественных материалов, который получил очень широкое применение в быту, и как орудие труда, и как часть разных видов оружия (ножи, наконечники стрел, копий и т. д.), — для изготовления украшений и других предметов обихода.

Именно свойства стекла как аморфного вещества, с одной стороны, наделяющего его хрупкостью, в чём его недостаток и неприменимость для изготовления, например, инструментов, к которым предъявляются требования повышенной прочности, с другой стороны, это отсутствие кристаллической решётки дало ему и преимущество, которое является причиной того, что с первыми в истории медицинскими, хирургическими инструментами по их остроте, возможностям заточки, до сих пор не может сравниться ни один металлический скальпель

Различаются три главных вида стекла:

  • Содово-известковое стекло (1Na2O : 1CaO : 6SiO2)
  • Калийно-известковое стекло (1K2O : 1CaO : 6SiO2)
  • Калийно-свинцовое стекло (1K2O : 1PbO : 6SiO2)

Один из самых главных недостатков стекол это хрупкость. Достоинства: высокая электроизоляционная , химическая и термическая стойкость

 

 

30. ЭЛЕКТРОТЕХНИ́ЧЕСКАЯ КЕРА́МИКА, обширная группа используемых в промышленности керамических материалов (стеатитовая керамика (см. СТЕАТИТОВАЯ КЕРАМИКА), титановая керамика (см. ТИТАНОВАЯ КЕРАМИКА), сегнето- и пьезоэлектрическая керамика, электрофарфор (см. ЭЛЕКТРОФАРФОР)), обладающих прочностью и необходимыми электротехническими свойствами (большим удельным электрическим сопротивлением — объемным и поверхностным, высокой электрической прочностью, сравнительно небольшим тангенсом угла диэлектрических потерь).
В производстве электрокерамики используются минеральное сырье и другие исходные материалы высокого качества. Спекание производится в туннельных и конвейерных печах с автоматическим регулированием режима обжига. На электрические свойства керамики влияют фазовый состав и технология изготовления керамики. Диэлектрическая проницаемость полученного материала обусловлена в основном процессами, протекающими в кристаллических зернах, электропроводность — в аморфной фазе, диэлектрические потери — как в кристаллических зернах, так и в аморфной фазе. Электрическая и механическая прочность зависят от размера пор, химического состава и размера кристаллических зерен. Кристаллическая фаза влияет на величину температурного коэффициента линейного расширения.
Широкое применение в качестве электроизоляционного материала находит электротехнический фарфор, который является основным керамическим материалом, используемым в производстве широкого ассортимента низковольтных и высоковольтных изоляторов и других изоляционных элементов с рабочим напряжением до 1150 кВ переменного и до 1500 кВ постоянного тока. Преимущества электрофарфора перед другими электроизоляционными материалами состоят в том, что из него можно изготовлять изоляторы сложной конфигурации с хорошими прочностными характеристиками, сырьевые материалы доступны, технология изготовления изделий относительно проста.
К электротехнической низкочастотной установочной керамике относится также разновидность стеатитовой керамики — высоковольтная стеатитовая керамика, изготовленная на основе талька (70—85%), глинистых веществ (до10%) и оксида бария (до15%), Высоковольтная стеатитовая керамика по сравнению с электрофарфором имеет повышенные механические и электротехнические свойства. Поэтому она применяется там, где необходима повышенная механическая прочность. Технология изготовления изделий из стеатитовой керамики сложнее и требует более высокой температуры обжига, чем из электрофарфора. Однако усадка этих изделий меньше.
Термо- и дугостойкой керамикой, используемой для изготовления специальных изоляторов электронагревательных устройств, дугогасительных камер, высоковольтных выключателей, пирометрических защитных трубок и пр., является кордиеритовая керамика, изготовленная на основе кордиерита (см. КОРДИЕРИТ) (до 60%).

31. Слюдаявляется основой большой группы электроизоляционных изделий. Главное достоинство слюды - высокая термостойкость наряду с достаточно высокими электроизоляционными характеристиками. Слюда является природным минералом сложного состава. В электротехнике используют два вида слюд: мусковит КАl2(АlSi3О10)(ОН)2 и флогопит КMg3(АlSi3О10(ОН)2. Высокие электроизоляционные характеристики слюды обязаны ее необычному строению, а именно - слоистости. Слюдяные пластинки можно расщеплять на плоские пластинки вплоть до субмикронных размеров. Разрушающие напряжения при отрыве одного слоя от другого слоя составляют примерно 0.1 МПа, тогда как при растяжении вдоль слоя - 200-300 МПа. Из других свойств слюды отметим невысокий tgd , менее чем 10-2; высокое удельное сопротивление, более 1012 Ом·м; достаточно высокую электрическую прочность, более 100 кВ/мм; термостойкость, температура плавления более 1200° С.

Слюда используется в качестве электрической изоляции, как в виде щипаных тонких пластинок, в.т.ч. склееных между собой (миканиты), так и в виде слюдяных бумаг, в.т.ч. пропитанных различными связующими (слюдиниты или слюдопласты). Слюдяная бумага производится по технологии, близкой к технологии обычной бумаги. Слюду размельчают, готовят пульпу, на бумагоделательных машинах раскатывают листы бумаги.

Миканиты обладают лучшими механическими характеристиками и влагостойкостью, но они более дороги и менее технологичны. Применение - пазовая и витковая изоляция электрических машин.

Слюдиниты - листовые материалы, изготовленные из слюдяной бумаги на основе мусковита. Иногда их комбинируют с подложкой из стеклоткани (стеклослюдинит), или полимерной пленки (пленкослюдинит). Бумаги, пропитанные лаком, или другим связующим, обладают лучшими механическими и электрофизическими характеристиками, чем непропитанные бумаги, но их термостойкость обычно ниже, т.к. она определяется свойствами пропитывающего связующего.

Слюдопласты - листовые материалы, изготовленные из слюдяной бумаги на основе флогопита и пропитанные связующими. Как и слюдиниты, они также комбинируются с другими материалами. По сравнению со слюдинитами они обладают несколько худшими электрофизическими характеристиками, но обладают меньшей стоимостью. Применение слюдинитов и слюдопластов - изоляция электрических машин, нагревостойкая изоляция электрических приборов.

33, Кристаллическая решетка, в которой отсутствуют нарушения сплошности и все узлы заполнены однородными атомами называется идеальной кристалли­ческой решеткой металла.

В решетке реального металла могут находиться различные дефекты.

Все дефекты кристаллической решетки принято делить на точечные, линейные, поверхностные и объемные.

Точечные дефекты соизмеримы с размерами атомов. К ним относятся вакансии, т. е. незаполненные узлы решет­ки, межузельные атомы данного металла (рис 1.8), примесные атомы замещения, т. е. атомы, по диаметру соизмеримые с атомами данного металла и примесные атомы внедрения, имеющие очень малые размеры и поэтому находящиеся в междоузлиях (рис 1.9). Влияние этих дефектов на прочность металла может быть различным в зависимости от их ко­личества в единице объема и характера.

 

Линейные дефекты имеют длину, значительно превышаю­щую их поперечные размеры. К ним относятся дислокации, т. е. дефекты, образующиеся в решетке в результате смещений кристаллографических плоскостей.

 

Дислокации бывают двух видов.

Наиболее характерной является краевая дислокация (рис. 1.10). Она образуется в результате возникновения в решетке так называемой полуплоскости или экстраплоскости.

Нижний ряд экстраплоскости собственно и принято называть дислокацией.

Другим типом дислокации является винтовая дислокация, которая представляет собой некоторую условную ось внутри кристалла, вокруг которой закручены атомные плоскости (рис.1.11).

В винтовой дислокации, так же как в краевой, существенные искажения кристаллической решетки наблюдаются только вблизи оси, поэтому такой дефект может быть отнесен к линейным.

Дислокации обладают высокой подвижностью, поэтому существенно уменьшают прочность металла, так как облегчают образование сдвигов в зернах-кристаллитах под действием приложенных напряжений.

Дислокационный механизм сдвиговой пластической деформации внутри кристаллов может привести к разрушению изделия. Таким образом, дислокации непосредственно влияют на прочностные характеристики металла.

Для оценки этого влияния используется плотность дислокаций, под которой принято по­нимать отношение суммарной длины дислокаций к объему содержащего их металла. Плотности дислокаций измеряется в см-2 илим-2.

На рис. 1.12 в виде кривой ABC схематически показана за­висимость прочности металла от плотности дислокаций. Точ­ка А соответствует теоретической прочности металла, обус­ловленной необходимостью одновременного разрыва всех межатомных связей, проходящих через плоскость сдвига, в случае отсутствия дислокаций.

При увеличении количества дислокаций (см. участок АВ) прочность резко снижается, так как на несколько порядков уменьшаются усилия, необходимые для осущест­вления сдвигов в зернах металла при его деформировании и разрушении.

При плотности дислокаций 106-107 см-2 (точ­ка В на кривой), прочности минимальна, и на участке ВС происходит ее рост. Это объясняется тем, что с ростом плотности дислокаций их передвижение происходит не только по парал­лельным, но и по пересекающимся плоскостям, что существенно затрудняет процесс деформирования зерен.

Поэтому начиная с точки В прочность металла возрастает.

Максимальная плотность дислокаций, может составить 1013 см-2. При дальнейшем росте плотности дислокаций происходит разрушение металла.

Поверхностные дефекты включают в себя главным образом границы зерен (рис.1.13). На границах кристаллическая решетка сильно искажена. В них скапливаются перемещающиеся изнутри зерен дислокации.

Из практики известно, что мелкозернистый металл прочнее круп­нозернистого. Так как у последнего меньше суммарная про­тяженность (площадь) границ. То можно сделать вывод, что поверхностные дефекты способствуют повышению прочности металла. Поэтому создано несколько технологических способов полу­чения мелкозернистых сплавов.

Объемные дефекты кристаллической решетки включают трещины и поры. Наличие данных дефектов, уменьшая плотность металла, снижает его прочность.

Кроме того, трещины являются сильными концентратора­ми напряжений, в десятки и более раз повышающими напря­жения создаваемые в металле рабочими нагрузками. По­следнее обстоятельство наиболее существенно влияет на прочность металла

34. Сплавы металлов, металлические сплавы, твёрдые и жидкие системы, образованные главным образом сплавлением двух или более металлов, а также металлов с различными неметаллами. Термин "С." первоначально относился к материалам с металлическими свойствами. Однако с середины 20 в. в связи с бурным развитием физики и техники полупроводников и полупроводниковых материалов понятие С. расширилось и распространилось на С. элементарных полупроводников и полупроводниковых соединений. С. даже при сравнительно простой кристаллической структуре часто обладают более высокими механическими и физическими свойствами, чем составляющие их чистые металлы, например твёрдые растворы Cu—Sn (бронза) или Fe—C (чугун, сталь). Два больших периода истории материальной культуры — бронзовый век и железный век — названы по тем металлам и С., из которых изготовлялись орудия труда, предметы вооружения и пр. Издавна было известно, что свойства С. зависят не только от их состава, но и от тепловой (например, закалка) и механической (например, ковка) обработки, Переход от поиска практически важных С. с помощью "проб и ошибок" к научным основам создания промышленных С. произошёл только в конце 19 — начале 20 вв., когда под влиянием быстро растущих запросов техники и идей физической химии возникло учение о зависимости между свойствами металлов и свойствами образованных из них С., а также о влиянии на них механических, тепловых, химических и др. воздействий (см. Металловедение, Металлография, Металлофизика, физико-химический анализ). Были построены диаграммы состояния и диаграммы состав — свойство для всевозможных комбинаций металлических систем, как двойных, так и многокомпонентных. Раскрываемый диаграммой состояния характер взаимодействия компонентов системы (образование твёрдых растворов, химических соединений, механических смесей, наличие фазовых превращений в твёрдом состоянии) позволяет предвидеть тип диаграмм состав — твёрдость, состав — электропроводность и др., получить представление о макроструктуре С. Во второй половине 20 в. внимание учёных в СССР и за рубежом всё больше сосредоточивается на проблеме предсказания характера взаимодействия элементов и свойств их С. При этом используются закономерности, вскрытые периодической системой элементов, успехи теориихимической связи, достижения физики твёрдого тела и вычислительной техники. Разработка теории С. создала новые возможности развития промышленности, а также ряда отраслей новой техники. Современные промышленные С. — основная часть конструкционных материалов. При этом 95% мировой металлопродукции составляют С. на основе железа — самого дешёвого и доступного металла (сталь, чугун, ферросплавы). Всё больше элементов периодической системы Менделеева, до недавнего времени представлявших чисто научный интерес, находит практическое применение для легирования известных и создания новых С. с целью расширения диапазона свойств и областей применения.

Большое число всевозможных С. требует их классификации. Для неё существует теоретический и практический подход. В первом случае с точки зрения термодинамики химической (и фаз правила) С. классифицируют: а) по числу компонентов — на двойные, тройные и т. д.; б) по числу фаз — на однофазные (твёрдый раствор или интерметаллид) и многофазные (гетерофазные), состоящие из двух и более фаз. Этими фазами могут быть чистые компоненты, твёрдые растворы, фазы со структурой a-, b-, g-, e-латуни, b-вольфрама, типа Cu5Ca, NiAs, CaF2, сигма-фазы, фазы Лавеса (названы по имени нем. учёного Ф. Лавеса), фазы внедрения и др. Особенно ценны С. с очень тонкой гетерогенностью (см. Дисперсноупрочнённые материалы, Старение металлов); можно считать, что они лежат на границе между твёрдыми растворами и многофазными С. По практическому получению и применению принята следующая классификация С.: а) по металлам — либо являющимся основой С. (С. чёрных металлов и С. цветных металлов, а также алюминиевые сплавы, железные сплавы, никелевые сплавы и т. п.), либо по добавленным в небольших количествах и придающим особо ценные свойства легирующим компонентам (бериллиевая бронза, ванадиевая, вольфрамовая и др. стали); б) по применению (для изготовления конструкций или инструментов) и свойствам — антифрикционные, жаропрочные, жаростойкие, износостойкие, лёгкие и сверхлёгкие, легкоплавкие, химически стойкие и многие другие, а также С. с особыми физическими свойствами — тепловыми, магнитными, электрическими (см. Прецизионные сплавы); в) по технологии изготовления изделий — на литейные (отливка жидких С. в формы); деформируемые (в холодном или горячем состоянии путём ковки, прокатки, волочения, прессования, штамповки); полученные методами порошковой металлургии (см. Спечённые материалы).

Для обозначения качественного состава выпускаемые в СССР С. маркируются (см. на примере медных сплавов, легированных сталей). Кроме того, многие С. имеют названия, связанные с различными их признаками: составом (например, нихром), особыми свойствами (например, инвар, константан). С. называют и по фамилиям изобретателей (Вуда сплав, мельхиор, монель-металл), названиям фирм (армко-железо) и др.

Свойства большинства С. определяются как составом, так и структурой С., зависящей от условийкристаллизации и охлаждения, термической и механической обработки. При нагреве и охлаждении изменяется структура С. (см. Макроструктура, Микроструктура), что обусловливает изменение механических, физических и химических свойств и влияет на поведение С. при обработке и эксплуатации. Выяснение (с помощью диаграмм состояния) возможных фазовых превращений в С. даёт исходные данные для анализа важнейших видов термической обработки (закалки, отпуска металлов, отжига, старения). Например, перед отжигом углеродистых сталей исходной структурой чаще всего является феррито-карбидная смесь; основное превращение, происходящее при нагревании, — это переход перлита в аустенит при температуре выше 727 °С ("точка A1"); закалка позволяет сохранить аустенитную структуру (т. н. закалка без полиморфного превращения, при которой происходит повышение прочности при сохранении пластичности С.). Типичный пример подобного поведения для алюминиевых С. — закаленный дуралюмин Д16. Реже встречаются С., у которых при закалке снижается прочность и сильно возрастает пластичность по сравнению с отожжённым состоянием. Типичный пример — бериллиевая бронза Бр. Б2 или нержавеющая хромоникелевая сталь X18H9. Для любых металлов или С., в которых при изменении температуры происходит полиморфное превращение основного компонента, при быстром охлаждении возможна закалка с бездиффузионным полиморфным превращением, которую обычно называют "закалкой на мартенсит". Мартенситное превращение, открытое при изучении закалки углеродистых и легированных сталей, как выяснилось впоследствии, является одним из фундаментальных способов перестройки кристаллической решётки, свойственным как чистым металлам, так и самым различным классам С.: безуглеродистым С. на основе железа, сплавам цветных металлов, полупроводниковым соединениям и др. Современная термическая обработка металлов и С. включает не только собственно термическую, но итермомеханическую обработку, химико-механическую обработку и химико-термическую обработку. В процессе таких технологических операций, как литьё, сварка, горячая обработка давлением, С. могут побочно также подвергаться отдельным видам термического воздействия и изменять свои свойства.

Для установления и проверки свойств С. применяют различные методы контроля, в т. ч. разрушающего — испытания на механическую прочность и пластичность, жаропрочность (см. Механические свойства материалов), а также испытания на стойкость против коррозии(см. Коррозия металлов, Жаростойкость и др.), и неразрушающего (измерения твёрдости, электрических, оптических, магнитных и др. свойств). Состав С. определяется химико-аналитическими методами (см. Качественный анализ, Количественный анализ), с помощью спектрального анализа, рентгеноспектрального анализа и др. методов. Весьма эффективны для практического применения методы быстрого ("экспрессного") химического анализа, используемые при производстве С., полуфабрикатов и изделий из С. Для исследования как самой структуры С., так и её дефектов используются методы физического металловедения. Различают макроскопические и микроскопические дефекты С. (см. Дефекты в кристаллах, Дефекты металлов).

Подавляющее большинство промышленных С. существует в мелкозернистом (в виде поликристаллов) состоянии; свойства таких С. практически изотропны (см. Изотропия). Получение С. в виде монокристалловпредставляло чисто научный интерес. Лишь со 2-й половины 20 в. появилась необходимость в промышленном производстве С. в виде монокристаллов, т. к. в ряде областей новой техники могут быть использованы только монокристаллы (см. Полупроводниковые материалы).

Современные успехи науки о С. в значительной мере связаны с совершенствованием классических и разработкой новых физических методов исследования твёрдого тела (см. Рентгеновский структурный анализ,Электронная микроскопия, Нейтронография, Электронография и др. методы).Подробнее о методах получения С., их свойствах, значении и применении см. также статьи о различных С.

35. Железоуглеродистые сплавы,сплавы железа с углеродом на основе железа. Варьируя состав и структуру, получают Ж. с. с разнообразными свойствами, что делает их универсальными материалами. Различают чистые Ж. с. (со следами примесей), получаемые в небольших количествах для исследовательских целей, и технические Ж. с. — стали (до 2%С) и чугуны (св. 2% С), мировое производство которых измеряется сотнями млн. т.Технические Ж. с. содержат примеси. Их делят на обычные (фосфор Р, сера S, марганец Mn, кремний Si, водород Н, азот N, кислород О), легирующие (хром Cr, никель Ni, молибден Mo, вольфрам W, ванадий V, титан Ti, кобальт Со, медь Cu и др.) и модифицирующие (магний Mg, церий Ce, кальций Ca и др.). В большинстве случаев основой, определяющей строение и свойства сталей и чугунов, является система Fe — С. Начало научному изучению этой системы положили русские металлурги П. П. Аносов (1831) и Д. К. Чернов (1868). Аносов впервые применил микроскоп при исследовании Ж. с., а Чернов установил их кристаллическую природу, обнаружил дендритную кристаллизацию и открыл в них превращения в твёрдом состоянии. Из зарубежных учёных, способствовавших созданию диаграммы состояния Fe — С сплавов, следует отметить Ф. Осмонда (Франция), У. Ч. Робертса-Остена (Англия), Б. Розебома (Голландия) и П. Геренса (Германия).

Фазовые состояния Ж. с. при разных составах и температурах описываются диаграммами стабильного (рис. 1, а) и метастабильного (рис. 1, б) равновесий. В стабильном состоянии в Ж. с. встречаются жидкий раствор углерода в железе (Ж), три твёрдых раствора углерода в полиморфных модификациях железа (табл. 1)

Табл. 1.— Кристаллические фазы железоуглеродистых сплавов

Название фазы Природа фазы Структура
a-феррит Твердый раствор внедрения углерода в a-Fe Объемноцен трированная кубическая
Аустенит Твердый раствор внедрения углерода в g-Fe Гранецентри рованная кубическая
d-феррит Твердый раствор внедрения углерода в d-Fe Объемноцен трированная кубическая
Графит Полиморфная модификация углерода Гексогональная слоистая
Цементит Карбид железа Fe2C Ромбическая

a-раствор (a-феррит), g-раствор (аустенит) и d-раствор (d-феррит), и графит (Г). В метастабильном состоянии в Ж. с. встречаются Ж, a-, g-, d-растворы и карбид железа Fe3C — цементит (Ц). Области устойчивости Ж. с. в однофазных и двухфазных состояниях указаны на диаграммах. При некоторых условиях в Ж. с. могут существовать в равновесии и три фазы. При температурах НВ возможно перитектич. равновесие d + g + Ж,ECF эвтектическое стабильное равновесие g + Ж + Г; при ECF — эвтектическое метастабильное равновесие g + Ж + Ц; при P'S'K' — эвтектоидное стабильное равновесие a + g + Г', при PSK — эвтектоидное метастабильное равновесие a + g+ Ц. Диаграммы а и б вычерчиваю и в одной координатной системе (рис. 1, в). Такая сдвоенная диаграмма наглядно характеризует относительное смещение однотипных линий равновесия и облегчает анализ Ж. с., содержащих стабильные и метастабильные фазы одновременно.

Основной причиной появления в Ж. с. высокоуглеродистой метастабильной фазы в виде цементита являются трудности формирования графита. Образование графита в жидком растворе Ж и твёрдых растворах a и g связано с практически полным удалением атомов железа из участков сплава, где зарождается и растет графит. Оно требует значительных атомных передвижений. Если Ж. с. охлаждаются медленно или длительно выдерживаются при повышенных температурах, атомы железа успевают удалиться из мест, где формируется графит, и тогда возникают стабильные состояния. При ускоренном охлаждении и недостаточных выдержках удаление малоподвижных атомов железа задерживается, почти все они остаются на месте, и тогда в жидких и твёрдых растворах зарождается и растет цементит. Необходимая для этого диффузия легкоподвижных при повышенных температурах атомов углерода, не требующая больших выдержек, успевает происходить и при ускоренном охлаждении. Помимо основных фаз, указанных на диаграммах, в технических Ж. с. встречаются небольшие количества и др. фаз, появление которых обусловлено наличием примесей. Часто встречаются сульфиды (FeS, MnS), фосфиды (Fe3P), окислы железа и примесей (FeO, MnO, Al2O3, Cr2O3, TiO2 и др.), нитриды (FeN, AlN) и др. неметаллические фазы. Точечными линиями на диаграммах отмечены точки Кюри, наблюдающиеся в Ж. с. в связи с магнитными превращениями феррита (768°С) и цементита (210°С).

Строение Ж. с. определяется составом, условиями затвердевания и структурными изменениями в твёрдом состоянии. В зависимости от содержания углерода Ж. с. делят на стали и чугуны. Стали с концентрацией углерода, меньшей чем эвтектоидная S' и S (табл. 2), называют доэвтектоидными, а более высокоуглеродистые — заэвтектоидными. Чугуны с концентрацией углерода, меньшей чем эвтектическая C1 и С, называют доэвтектическими, а более высокоуглеродистые — заэвтектическими.

Табл. 2.— Координаты точек диаграмм Fe — С

Точка Температура, °С Концентрация углерода, %
A 0,000  
B 0,50  
С' 4,26  
С 4,30  
N 0,000  
Н 0,10  
J 0,16  
G 0,000  
E' 2,01  
E 2,03  
S' 0,68  
S 0,80  
P' 0,023  
P 0,025  

Затвердевание сталей, содержащих до 0,5% С, начинается с выпадения кристаллов 8-раствора обычно в виде дендритов. При концентрациях углерода до 0,1% кристаллизация заканчивается образованием однофазной структуры d-раствора. Стали с 0,1—0,5% С после выделения некоторого количества 8-раствора испытывают перитектическое превращение Ж + d —> g. В интервале концентраций 0,10—0,16% С оно приводит к полному затвердеванию, а в интервале 0,16—0,50% С кристаллизация завершается при охлаждении до температуры линии IE. В Ж. с. с 0,5—4,26% С кристаллизация начинается с выделения g-раствора также в виде дендритов. Стали полностью затвердевают в интервале температур, ограниченном линиями ВС и IE, приобретая однофазную аустенитную структуру. Затвердевание же чугунов, начинаясь с выделения избыточного (первичного) g- раствора, заканчивается эвтектическим распадом остатка жидкости по одному из трёх возможных вариантов: Ж ® g + Г, Ж ®g + Ц или Ж ®(+ Г + Ц. В первом случае получаются т. н. серые чугуны, во втором — белые, в третьем — половинчатые. В зависимости от условий кристаллизации графит выделяется в виде разветвленных (рис. 2, ж) или шаровидных (рис. 2, з) включений, а цементит — в виде монолитных пластин (рис. 2, и) или проросших разветвленным аустенитом (т. н. ледебурит, рис. 2, к). В Ж. с., содержащих более 4,26—4,3% С, кристаллизация переохлажденного ниже линии D1C1 расплава в условиях медленного охлаждения начинается с образования первичного графита разветвленной или шаровидной формы. В условиях ускоренного охлаждения (при переохлаждениях ниже линии DC) образуются пластины первичного цементита (рис. 2, л). При промежуточных скоростях охлаждения выделяются и графит, и цементит. Кристаллизация заэвтектических чугунов, так же как и доэвтектических, завершается распадом остатка жидкости на смесь g- раствора с высокоуглеродистыми фазами.

Строение затвердевших Ж. с. существенно изменяется при дальнейшем охлаждении. Эти изменения обусловлены полиморфными превращениями железа, уменьшением растворимости в нём углерода, графитизацией цементита. Структура может изменяться в твёрдом состоянии в результате процессов рекристаллизации твёрдых растворов, сфероидизации кристаллов (из неравноосных становятся равноосными), коалесценции (одни кристаллы цементита укрупняются за счёт других) высокоуглеродистых фаз.

Полиморфные превращения Ж. с. связаны с перестройками гранецентрированной кубической (ГЦК) решётки g-Fe и объёмноцентрированной решётки (ОЦК) a- и d-Fe

В зависимости от условий охлаждения и нагревания полиморфные превращения твёрдых растворов происходят разными путями. При небольших переохлаждениях (и перегревах) имеет место т. н. нормальная перестройка решёток железа, осуществляющаяся в результате неупорядоченных индивидуальных переходов атомов от исходной фазы к образующейся; она сопровождается диффузионным перераспределением углерода между фазами. При больших скоростях охлаждения или нагревания полиморфные превращения твёрдых растворов происходят бездиффузионным (мартенситным) путём. Решётка железа перестраивается быстрым сдвиговым механизмом в результате упорядоченных коллективных смещений атомов без диффузионного перераспределения углерода между фазами. Например, при закалке Ж. с. в воде g- раствор переходит в a- раствор того же состава. Этот пересыщенный углеродом a- раствор называют мартенситом (рис. 2, е). Превращения при промежуточных условиях могут совмещать в себе сдвиговую перестройку решётки железа с диффузионным перераспределением углерода (бейнитное превращение). Формирующиеся при этом структуры существенно различны. В первом случае образуются равноосные с малым числом дефектов кристаллы твёрдого раствора (рис. 2, а). Во втором и третьем — игольчатые и пластинчатые кристаллы (рис. 2, е) с многочисленными двойниками и линиями скольжения. Структура Ж. с. изменяется также и в связи с изменением растворимости углерода в a- и g-железе при охлаждении и нагревании. При охлаждении растворы пересыщаются углеродом и выделяются кристаллы высокоуглеродистых фаз (цементита и графита). При нагревании имеющиеся высокоуглеродистые фазы растворяются в a- и g-фазах.

Зарождение и рост кристаллов цементита в пересыщенных растворах происходит обычно с большей скоростью, чем образование графита, и поэтому Ж. с. часто метастабильны. В зависимости от переохлаждения цементит, выделяющийся из твёрдого раствора, может иметь вид равноосных кристаллов, пограничной сетки, пластин и игл (рис. 2, г, д). При высокотемпературных выдержках кристаллы цементита сфероидизируются; может происходить и процесс коалесценции. Если Ж. с., содержащие цементит, длительно выдерживать при повышенных температурах, происходит графитизация — зарождается и растет графит, а цементит растворяется, Этот процесс используется при производстве изделий из графитизированной стали и ковкого чугуна (рис. 2, м). Важную роль при формировании структуры Ж. с. в твёрдом состоянии играет эвтектоидный распад т-раствора на a-раствор и высокоуглеродистую фазу. При очень малых переохлаждениях образуются феррит и графит (рис. 2, м), при небольшом увеличении переохлаждения — феррит и сфероидизированный цементит (рис. 2, г), затем (рис. 2, в) смесь феррита и цементита приобретает пластинчатое строение перлита, тем более тонкое, чем больше переохлаждение. При персохлаждениях, измеряемых сотнями градусов, эвтектоидный распад подавляется, и g- раствор превращается в мартенсит (рис. 2, е). Строение Ж. с. можно изменять в широких пределах. Основными методами управления структурой Ж. с. являются изменения химического состава, условий затвердевания, пластической деформации, термической и термомеханической обработок. Меняя фазовый состав, величину, форму, распределение и дефектность кристаллов, можно широко варьировать и свойства Ж. с. Например, важнейшие при эксплуатации Ж. с. механические свойства изменяются в следующих пределах: твёрдость от 60 до 800 HB; предел прочности 2·104—3,5·106 н/см2 (2·103—3,5·105 кгс/см2);относительное удлинение от 0 до 70%.

36.Сталь- сплав железа с углеродом (до 2%).
По химическому составусталь разделяют на:

· углеродистую,

· легированную.

По составу сталь разделяют на:

· сталь обыкновенного качества,

· качественную,

· повышенного качества,

· высококачественную.

Сталь углеродистую обыкновенного качества подразделяют на три группы:

· А - поставляемую по механическим свойствам и применяемую в основном тогда, когда изделия из нее подвергают горячей обработке (сварка, ковка и др.), которая может изменить регламентируемые механические свойства (Ст0, Ст1 и др.);

· Б - поставляемую по химическому составу и применяемую для деталей, подвергаемых такой обработке, при которой механические свойства меняются, а их уровень, кроме условий обработки, определяется химическим составом (БСт0, БСт1 и др.);

· В- поставляемую по механическим свойствам и химическому составу для деталей, подвергаемых сварке (ВСт1, ВСт2 и др.).

Сталь углеродистую обыкновенного качества изготовляют следующих марок: Ст0, Ст1кп, Ст1пс, Ст1сп, Ст2кп, Ст2пс, Ст2сп, Ст3кп, Ст3пс, Ст3сп, Ст3Гпс, Ст3Гсп, Ст4кп, Ст4пс, Ст4сп, Ст5пс, Ст5сп, Ст5Гпс, Ст6пс, Ст6сп. Буквы Ст обозначают "Сталь", цифры - условный номер марки в зависимости от химического состава, буквы "кп", "пс", "сп" - степень раскисления ("кп" - кипящая, "пс" - полуспокойная, "сп" - спокойная).

Сталь углеродистая качественная конструкционная по видам обработкипри поставке делится на: горячекатаную и кованую, калиброванную, круглую со специальной отделкой поверхности - серебрянку.

Таблица 1. Категория стали

категории требования к испытанию механических свойств виды стали
Без испытания механических свойств на растяжение и ударную вязкость. Горячекатаная, кованая, калиброванная, серебрянка
С испытанием механических свойств на растяжение и ударную вязкость на образцах, изготовленных из нормализованных заготовок размером 25мм (диаметр или сторона квадрата). Горячекатаная, кованая, калиброванная, серебрянка
С испытанием механических свойств на растяжение на образцах, изготовленных из нормализованных заготовок указанного в заказе размера, но не более 100мм. Горячекатаная, кованая, калиброванная
С испытанием механических свойств на растяжение и ударную вязкость на образцах, изготовленных из термически обработанных (закалка + отпуск) заготовок указанного в заказе размера, но не более 100мм. Горячекатаная, кованая, калиброванная
С испытанием механических свойств на растяжение на образцах, изготовленных из сталей в нагартованном или термически обработанном состоянии (отожженной или высокоотпущенной). Калиброванная

Легированную сталь по степени легирования разделяют на:

· низколегированную (легирующих элементов до 2,5%;

· среднелегированную (от 2,5 до 10%);

· высоколегированную ( от 10 до 50%).

В зависимости от основных легирующих элементов различают 14 групп сталей.
К высоколегированным относят:

· коррозионностойкие (нержавеющие) стали и сплавы, обладающие стойкостью против электрохимической и химической коррозии; межкристаллитной коррозии, коррозии под напряжением и др.;

· жаростойкие (окалиностойкие) стали и сплавы, обладающие стойкостью против химического разрушения в газовых средах при температуре выше 500С, работающие в ненагруженном и слабонагруженном состоянии;

· жаропрочные стали и сплавы, работающие в нагруженном состоянии при высоких температурах в течении определенного времени и обладающие при этом достаточной жаростойкостью.

Электротехническую тонколистовую сталь разделяют:

а) по структурному состоянию и виду прокатки на классы:

· 1 - горячекатаная изотропная;

· 2 - холоднокатаная изотропная;

· 3 - холоднокатаная анизотропная с ребровой текстурой;

б) по содержанию кремния:

· 0 - до 0,4%;

· 1 - св. 0,4 до 0,8%;

· 2 - св. 0,8 до 1,8%;

· 3 - св. 1,8 до 2,8%;

· 4 - св. 2,8 до 3,8%;

· 5 - св. 3,8 до 4,8%;

химический состав стали не нормируется;

в) по основной нормируемой характеристике на группы:

· 0 - удельные потери при магнитной индукции 1,7 Тл и частоте 50 Гц (Р1,7/50);

· 1 - удельные потери при магнитной индукции 1,5 Тл и частоте 50 Гц (Р1,5/50);

· 2 - удельные потери при магнитной индукции 1,0 Тл и частоте 400 Гц (Р1,0/400);

· 6 - магнитная индукция в слабых магнитных полях при напряженности поля 0,4 А/м (В 0 4);

· 7 - магнитная индукция в средних магнитных полях при напряженности поля 10 А/м (В 10).

Сталь легированную конструкционнуюв зависимости от химического состава и свойств делят на три типа:

· качественная;

· высококачественная А;

· особовысококачественная Ш (электрошлакового переплава).

По видам обработкисталь поставляется:

· горячекатаная;

· кованая;

· калиброванная;

· серебрянка.

По назначениюизготовляют прокат:

· для горячей обработки давлением и холодного волочения (подкат);

для холодной механической обработки.
Чугун

37. Чугун - это железоуглеродистый сплав, содержащий более 2,14% углерода. Однако указанная граница (2,14% C) относится только к двойным железоуглеродистым сплавам или сплавам, содержащим сравнительно небольшое число примесей. Вопрос о границе между сталями и чугунами в высоколегированных железоуглеродистых сплавах, т.е. содержащих ещё большее количество других элементов, кроме железа и углерода, является спорным. Железоуглеродистые сплавы затвердевают с образованием эвтектики.

Чугун - важнейший первичный продукт черной металлургии. Чугун вторичной плавки - один из основных конструкционных материалов, используемый как литейный сплав.

Чугун отличается от стали по составу - более высоким содержанием углерода, по технологическим свойствам - лучшими литейными качествами, малой способностью к пластической деформации (в обычных условиях не поддаётся ковке). Чугун дешевле стали.

Классификация чугунов

Принято несколько способов классификации чугунов: чугуны группируют по самым разным общим признакам (мы рассмотрим их позднее). Пока приведём классический пример классификации чугунов [1].

В зависимости от состояния углерода в чугуне различают:

  • белый чугун, в котором весь углерод находится в связанном состоянии в виде карбида;
  • серый чугун, в котором углерод в значительной степени или полностью находится в свободном состоянии в форме пластинчатого графита;
  • высокопрочный чугун, в котором углерод в значительной степени или полностью находится в свободном состоянии в форме шаровидного графита.
  • ковкий чугун, получающийся в результате отжига отливок из белого чугуна. В ковком чугуне весь углерод или значительная часть его находится в свободном состоянии в форме хлопьевидного графита (углерода отжига).

Таким образом, чугун (кроме белого) отличается от стали наличием в структуре графитовых включений, а между собой чугуны различаются формой этих включений.

Естественно, что важнейший вопрос теории чугуна - выяснение условий образования графита, так называемой графитизации.

Цветные металлы, их свойства и сплавы
38.К цветным металлам* и сплавам относятся практически все металлы и сплавы, за исключением железа и его сплавов, образующих группу чёрных металлов. Цветные металлы встречаются реже, чем железо и часто их добыча стоит значительно дороже, чем добыча железа. Однако цветные металлы часто обладают такими свойствами, какие у железа не обнаруживаются, и это оправдывает их применение. Выражение «цветной металл» объясняется цветом некоторых тяжёлых металлов: так, например, медь имеет красный цвет. Если металлы соответствующим образом смешать (в расплавленном состоянии), то получаются сплавы. Сплавы обладают лучшими свойствами, чем металлы, из которых они состоят. Сплавы, в свою очередь, подразделяются на сплавы тяжёлых металлов, сплавы лёгких металлов и т.д. Цветные металлы по ряду признаков разделяют на следующие группы: - тяжёлые металлы — медь, никель, цинк, свинец, олово; - лёгкие металлы — алюминий, магний, титан, бериллий, кальций,стронций, барий, литий, натрий, калий, рубидий, цезий; - благородные металлы — золото, серебро, платина, осмий, рутений,родий, палладий; - малые металлы — кобальт, кадмий, сурьма, висмут, ртуть, мышьяк; - тугоплавкие металлы — вольфрам, молибден, ванадий, тантал, ниобий,хром, марганец, цирконий; - редкоземельные металлы — лантан, церий, празеодим, неодим, самарий, европий, гадолиний, тербий, иттербий, диспрозий, гольмий, эрбий, тулий, лютеций, прометий, скандий, иттрий; - рассеянные металлы — индий, германий, таллий, таллий, рений, гафний, селен, теллур; - радиоактивные металлы — уран, торий, протактиний, радий, актиний, нептуний, плутоний, америций, калифорний, эйнштейний, фермий, менделевий, нобелий, лоуренсий. Чаще всего цветные металлы применяют в технике и промышленности в виде различных сплавов, что позволяет изменять их физические, механические и химические свойства в очень широких пределах. Кроме того, свойства цветных металлов изменяют путём термической обработки, нагартовки, эа счёт искусственного и естественного старения и т. д. Цветные металлы подвергают всем видам механической обработки и обработки давлением — ковке, штамповке, прокатке, прессованию, а также резанию, сварке, пайке. Из цветных металлов изготовляют литые детали, а также различные полуфабрикаты в виде проволоки, профильного металла, круглых, квадратных и шестигранных прутков, полосы, ленты, листов и фольги. Значительную часть цветных металлов используют в виде порошков для изготовления изделий методом порошковой металлургии, а также для изготовления различных красок и в качестве антикоррозионных покрытий. 39. Виды термической обработки металлов. Свойства сплава зависят от его структуры. Основным способом, позволяющим изменять структуру, а, следовательно, и свойства является термическая обработка. Основы термической обработки разработал Чернов Д.К.. В дальнейшем они развивались в работах Бочвара А.А., Курдюмова Г.В., Гуляева А.П. Термическая обработка представляет собой совокупность операций нагрева, выдержки и охлаждения, выполняемых в определенной последовательности при определенных режимах, с целью изменения внутреннего строения сплава и получения нужных свойств (представляется в виде графика в осях температура – время, см. рис. 12.1 ). Рис.12.1. Графики различных видов термообработки: отжига (1, 1а), закалки (2, 2а), отпуска (3), нормализации (4)   Различают следующие виды термической обработки: 1. Отжиг 1 рода – возможен для любых металлов и сплавов. Его проведение не обусловлено фазовыми превращениями в твердом состоянии. Нагрев, при отжиге первого рода, повышая подвижность атомов, частично или полностью устраняет химическую неоднородность, уменьшает внутреннее напряжения. Основное значение имеет температура нагрева и время выдержки. Характерным является медленное охлаждение Разновидностями отжига первого рода являются:
  • диффузионный;
  • рекристаллизационный;
  • отжиг для снятия напряжения после ковки, сварки, литья.
2. Отжиг II рода – отжиг металлов и сплавов, испытывающих фазовые превращения в твердом состоянии при нагреве и охлаждении. Проводится для сплавов, в которых имеются полиморфные или эвтектоидные превращения, а также переменная растворимость компонентов в твердом состоянии. Проводят отжиг второго рода с целью получения более равновесной структуры и подготовки ее к дальнейшей обработке. В результате отжига измельчается зерно, повышаются пластичность и вязкость, снижаются прочность и твердость, улучшается обрабатываемость резанием. Характеризуется нагревом до температур выше критических и очень медленным охлаждением, как правило, вместе с печью (рис. 12.1 (1, 1а)). 3. Закалка – проводится для сплавов, испытывающих фазовые превращения в твердом состоянии при нагреве и охлаждении, с целью повышение твердости и прочности путем образования неравновесных структур (сорбит, троостит, мартенсит). Характеризуется нагревом до температур выше критических и высокими скоростями охлаждения (рис. 12.1 (2, 2а)). 4. Отпуск – проводится с целью снятия внутренних напряжений, снижения твердости и увеличения пластичности и вязкости закаленных сталей. Характеризуется нагревом до температуры ниже критической А (рис. 12.1 (3)). Скорость охлаждения роли не играет. Происходят превращения, уменьшающие степень неравновесности структуры закаленной стали. Термическую обработку подразделяют на предварительную и окончательную. Предварительная – применяется для подготовки структуры и свойств материала для последующих технологических операций (для обработки давлением, улучшения обрабатываемости резанием). Окончательная – формирует свойство готового изделия.  
 

 

К цветным металлам* и сплавам относятся практически все металлы и сплавы, за исключением железа и его сплавов, образующих группу чёрных металлов. Цветные металлы встречаются реже, чем железо и часто их добыча стоит значительно дороже, чем добыча железа. Однако цветные металлы часто обладают такими свойствами, какие у железа не обнаруживаются, и это оправдывает их применение. Выражение «цветной металл» объясняется цветом некоторых тяжёлых металлов: так, например, медь имеет красный цвет. Если металлы соответствующим образом смешать (в расплавленном состоянии), то получаются сплавы. Сплавы обладают лучшими свойствами, чем металлы, из которых они состоят. Сплавы, в свою очередь, подразделяются на сплавы тяжёлых металлов, сплавы лёгких металлов и т.д. Цветные металлы по ряду признаков разделяют на следующие группы: - тяжёлые металлы — медь, никель, цинк, свинец, олово; - лёгкие металлы — алюминий, магний, титан, бериллий, кальций,стронций, барий, литий, натрий, калий, рубидий, цезий; - благородные металлы — золото, серебро, платина, осмий, рутений,родий, палладий; - малые металлы — кобальт, кадмий, сурьма, висмут, ртуть, мышьяк; - тугоплавкие металлы — вольфрам, молибден, ванадий, тантал, ниобий,хром, марганец, цирконий; - редкоземельные металлы — лантан, церий, празеодим, неодим, самарий, европий, гадолиний, тербий, иттербий, диспрозий, гольмий, эрбий, тулий, лютеций, прометий, скандий, иттрий; - рассеянные металлы — индий, германий, таллий, таллий, рений, гафний, селен, теллур; - радиоактивные металлы — уран, торий, протактиний, радий, актиний, нептуний, плутоний, америций, калифорний, эйнштейний, фермий, менделевий, нобелий, лоуренсий. Чаще всего цветные металлы применяют в технике и промышленности в виде различных сплавов, что позволяет изменять их физические, механические и химические свойства в очень широких пределах. Кроме того, свойства цветных металлов изменяют путём термической обработки, нагартовки, эа счёт искусственного и естественного старения и т. д. Цветные металлы подвергают всем видам механической обработки и обработки давлением — ковке, штамповке, прокатке, прессованию, а также резанию, сварке, пайке. Из цветных металлов изготовляют литые детали, а также различные полуфабрикаты в виде проволоки, профильного металла, круглых, квадратных и шестигранных прутков, полосы, ленты, листов и фольги. Значительную часть цветных металлов используют в виде порошков для изготовления изделий методом порошковой металлургии, а также для изготовления различных красок и в качестве антикоррозионных покрытий

 

 

40.Химико-термическая обработка металлов, совокупность технологических процессов, приводящих к изменению химическогосостава, структуры и свойств поверхности металла без изменения состава, структуры и свойств его сердцевидных зон. Осуществляется с помощью диффузионного насыщения поверхности различными элементами при повышенных температурах. Выбор элемента (или комплекса элементов) определяется требуемыми свойствами поверхности детали. Насыщение производят углеродом(цементация), азотом (азотирование), азотом и углеродом (нитроцементация, цианирование), металлами (см. Диффузионная металлизация), бором (борирование), кремнием (силицирование) и т.д.

В зависимости от физико-химического состояния среды, содержащей диффундирующий элемент, различают Х.-т. о. из газовой, жидкой, твёрдой или паровой фазы (чаще применяются первые 2 метода). Х.-т. о. проводится в газовых, вакуумных или в ванных печах. Х.-т. о. подвергаются изделия из стали, чугуна, чистых металлов, сплавов на основе никеля, молибдена, вольфрама,кобальта, ниобия, меди, алюминия и др.

Физико-химические процессы, происходящие вблизи поверхности при Х.-т. о., заключаются в образовании диффундирующего элемента в атомарном состоянии вследствие химических реакций в насыщающей среде или на границе раздела среды с поверхностью металла (при насыщении из газовой или жидкой фазы), сублимации диффундирующего элемента (насыщение из паровой фазы), последующей сорбции атомов элемента поверхностью металла и их диффузии в поверхностные слои металла. Концентрация диффундирующего элемента на поверхности металла, а также структура и свойства диффузионного слоя зависят от метода Х.-т. о. Глубина диффузии элемента возрастает с повышением температуры (по экспоненциальному закону) и с увеличением продолжительности процесса (по параболическому закону). Диффузионный слой, образующийся при Х.-т. о. деталей, изменяя структурно-энергетическое состояние поверхности, оказывает положительное влияние не только на физико-химические свойства поверхности, но и на объёмные свойства деталей. Х.-т. о. позволяет сообщить изделиям повышенную износостойкость, жаростойкость, коррозионную стойкость, усталостную прочность и т.д. (см. статьи о конкретных процессах Х.-т. о.).

 

41. Процессы обработки металлов давлением по назначению подразделяют на два вида:

§ для получения заготовок постоянного поперечного сечения по длине (прутков, проволоки, лент, листов), применяемых в строительных конструкциях или в качестве заготовок для последующего изготовления из них деталей — только обработкой резанием или с использованием предварительного пластического формоизменения, основными разновидностями таких процессов являются прокатка, прессование и волочение;

§ для получения деталей или заготовок (полуфабрикатов), имеющих приближённо формы и размеры готовых деталей и требующих обработки резанием лишь для придания им окончательных размеров и получения поверхности заданного качества; основными разновидностями таких процессов являются ковка и штамповка.

Прокатка

Прокатка - процесс пластического деформирования тел, между вращающимися приводными валками.

Прессование

Прессование заключается в продавливании заготовки, находящейся в замкнутой форме, через отверстие матрицы, причём форма и размеры поперечного сечения выдавленной части заготовки соответствуют форме и размерам отверстия матрицы.

Волочение

Волочение заключается в протягивании заготовки через сужающуюся полость матрицы; площадь поперечного сечения заготовки уменьшается и получает форму поперечного сечения отверстия матрицы.

Ковка

Ковкой изменяют форму и размеры заготовки путём последовательного воздействия универсальным инструментом (бойками) на отдельные участки нагретой заготовки.

Штамповка

 

Штамповочный пресс

Штамповкой изменяют форму и размеры заготовки с помощью специализированного инструмента — штампа (для каждой детали изготовляют свой штамп), который состоит из матрицы, пуансона и дополнительных частей. Различают объёмную и листовую штамповку. При объёмной штамповке в качестве заготовки используют сортовой металл, разрезаемый на заготовки. На заготовку в процессе объемной штамповки воздействуют специализированным инструментом — пуансоном, при этом металл заполняет полость матрицы, приобретая её форму и размеры.

Листовая штамповка

Листовой штамповкой получают плоские и пространственные полые детали из заготовок, у которых толщина значительно меньше размеров в плане (лист, лента, полоса). Обычно заготовка деформируется с помощью пуансона и матрицы.

Комбинации

Существуют так же процессы, при которых используется комбинации из нескольких методов. Например, метод прокатка-волочение.

 

42.Дефекты металлов, несовершенства строения металлов и сплавов. Дефекты металлов ухудшают их физико-механические свойства (например, электропроводность, магнитную проницаемость, прочность, плотность, пластичность). Различают Дефекты металлов тонкой структуры (атомарного масштаба), например дислокации, вакансии и др. (см. Дефекты в кристаллах), более грубые - субмикроскопические трещины, образующиеся по границам блоков кристалла и на его поверхности. Ещё более грубые Дефекты металлов - микро- и макроскопические дефекты, представляющие собой нарушения сплошности или однородности, образующиеся в металле вследствие несовершенства технологии и низкой технологичности многокомпонентных сплавов, требующих особенно точного соблюдения режимов на каждом этапе их изготовления и обработки.

Встречающиеся в металлических изделиях и полуфабрикатах дефекты различаются по размерам и расположению, а также по своей природе и происхождению. Они образуются при плавлении металла и получении отливок (неметаллические и шлаковые включения, усадочные раковины, рыхлоты, газовая пористость, плёны и т.д.), при обработке давлением (расслоения, заковы, закаты, волосовины, плёны, флокены), в результате термической, химико-термической, электрохимической и механической обработки (трещины, прижоги, обезуглероживание и т.д.), в процессе соединения металлов - при сварке, пайке, склёпывании и т.д. (непровар, непропай, трещины, коррозия и т.д.). Кроме того, дефекты в полуфабрикатах и готовых изделиях могут возникать при их хранении, транспортировке и эксплуатации (коррозионные поражения и др.).

По характеру дефекты могут быть: местными (различные нарушения сплошности - поры, раковины, трещины, расслоения, флокены, заковы, закаты и др.); распределёнными в ограниченных зонах (ликвационные скопления, зоны неполной закалки, зоны коррозионного поражения, местный наклёп); распределёнными по всему объёму изделия или по его поверхности (несоответствие химического состава, структуры, качества механической обработки).

Местные дефекты, локализованные в ограниченном объёме, могут быть точечными, линейными, плоскостными и объёмными. По расположению они разделяются на наружные (поверхностные и подповерхностные) и внутренние (глубинные).

 

43. Проводники́ — это тела, в которых имеются свободные носители заряда, то есть заряженные частицы, которые могут свободно перемещаться внутри этих тел. Среди наиболее распространённых твёрдых проводников известны металлы, полуметаллы, углерод (в видеугля и графита). Пример проводящих жидкостей при нормальных условиях — ртуть, электролиты, при высоких температурах — расплавы металлов. Пример проводящих газов — ионизированный газ (плазма). Некоторые вещества, при нормальных условиях являющиеся изоляторами, при внешних воздействиях могут переходить в проводящее состояние, а именно проводимость полупроводников может сильно варьироваться при изменении температуры, освещённости, легировании и т. п.

Свойства проводников:

К важнейшим параметрам, характери­зующим свойства проводниковых материалов, относятся:

1) удельная проводимость g или обратная ей величина — удельное сопротивление r,

2) температурный коэффициент удельного сопротивления ТКr или ar,

3) коэффициент теплопроводности gт,

4) контактная разность потенциалов и термоэлектродвижущая сила (термо-ЭДС),

5) работа выхода электронов из металла,

6) предел прочности при растяжении sр и относительное удлинение перед разрывом Dl/l.