ОПРЕДЕЛЕНИЕ ГОРИЗОНТАЛЬНОЙ СОСТАВЛЯЮЩЕЙ МАГНИТНОЙ ИНДУКЦИИ МАГНИТНОГО ПОЛЯ ЗЕМЛИ

Задача работы

1. Определить горизонтальную составляющую магнитной индукции магнитного поля Земли.

Физическое обоснование эксперимента

Самые ранние упоминания о земном магнетизме относятся к XII веку. Английский монах Некэм писал, что магнитная стрелка всегда показывает на север и что моряки определяют по ней курс корабля в открытом море, когда небо покрыто облаками и не видно Солнца и звезд. Тогда же китайцы заметили, что магнитная стрелка, как правило, направлена не строго с севера на юг, а несколько отклоняется от этого направления. Позже явление отклонения стрелки компаса от географического меридиана, или направления север-юг, получило название – магнитное склонение. Однако этому явлению долго не придавали значения, поскольку на океанах и морях такое отклонение не превышает нескольких градусов. Поэтому, хотя и известное многим, оно не нашло отражения в каких-либо документах. Есть основания полагать, что Христофор Колумб открыл не только Америку, но и магнитное склонение. Он же обнаружил во время первого путешествия через Атлантический океан в 1492 году и другой факт, имевший огромное значение в изучении магнитного поля Земли, что магнитное склонение изменяется с изменением географических координат.

Изменение магнитного склонения от одного места к другому, обнаруженное Колумбом, послужило мощным толчком к изучению магнитного поля Земли. И во многих местах земного шара начинают измерять магнитное склонение. В результате были открыты и другие интересные особенности магнитного поля Земли.

В 1544 году Георг Гартман измерял магнитное склонение в Нюрнберге и ряде других мест и обнаружил, что северный конец магнитной стрелки при этом стремился наклониться вниз. Независимо от Гартмана мастер компасного дела Роберт Норман из Лондона в 1576 году обратил внимание на то, что северные концы стрелок, тщательно уравновешенных и до намагничивания находившихся в горизонтальном положении, после намагничивания опускались вниз. Так было открыто магнитное наклонение. Магнитным наклонением называется угол, на который стрелка под действием магнитного поля Земли отклоняется вниз или вверх от горизонтальной плоскости.

Современные представления о Земле и земном магнетизме сводятся к следующему. Земля имеет форму эллипсоида вращения. Приближенно, если пренебречь эллиптичностью (разность радиусов на экваторе и полюсах составляет 21 км), Землю можно принять за шар со средним радиусом 6371 км. Громадный вращающийся земной шар намагничен и обладает магнитным полем.

Магнитное поле шара практически совпадает с полем стержнеобразного магнита, расположенного вблизи его центра. Поэтому Землю можно принять за гигантский магнит, который смещен примерно на 400 км от ее центра в сторону Тихого океана и наклонен от оси вращения на 12°. Силовые магнитные линии такого гигантского магнита выходят из северного магнитного полюса, располагающегося в южном полушарии, и устремляются к южному магнитному полюсу в северном полушарии, огибая земной шар и распространяясь на десятки тысяч километров и более в околоземном пространстве (см. рис.39.1).

Магнитное поле Земли в каждой точке пространства характеризуется вектором магнитной индукции или вектором напряженности , которые связаны между собой известным соотношением:

,

где m - магнитная проницаемость среды (для воздуха m = 1);

Гн/м – магнитная постоянная.

Так как m > 0, то векторы и направлены в одну и туже сторону.

На рис.1 также показано разложение вектора по двум взаимно перпендикулярным направлениям: . II

Векторы и II, которые являются геометрическими проекциями вектора напряженности магнитного поля Земли, также относятся к элементам Земного магнетизма.

Горизонтальная составляющая вектора магнитной индукции магнитного поля Земли - II - проекция вектора на горизонтальную плоскость (плоскость касательную к земной поверхности).

 


 

Земная ось

N

 

 

S

Магнитная ось

Рис. 39.1.

 

Вертикальная составляющая вектора магнитной индукции магнитного поля Земли - - проекция вектора на вертикальную ось (на направление к центру Земли).

Таким образом магнитное поле Земли представляется обычно в виде следующих элементов: магнитного склонения D, магнитного наклонения I, магнитной индукции магнитного поля Земли , вертикальной составляющей магнитной индукции магнитного поля , горизонтальной составляющей магнитной индукции магнитного поля II (см. рис.39.2 ).

Из рис.2 видно, что между указанными геомагнитными элементами существует определенная связь:

BII tgI

 

Географический меридиан

D Магнитный меридиан

II

I

 

 

Рис. 39.2

 

Единицей измерения магнитной индукции в системе СИ является Тесла (1 Тл). Напряженность магнитного поля измеряется в А/м (“Ампер на метр”). На практике часто используется единица системы СГСМ - Эрстед ( 1Э » 80 А/м ) . При измерениях слабых полей употребляется более мелкая единица напряженности - гамма. (g ).

 

Метод исследования и описание экспериментальной установки

Экспериментальная установка включает в себя (рис.39.3) источник питания постоянного тока (П), амперметр (А), реостат (R), переключатель (К) и тангенс-гальванометр (Г).

Тангенс-гальванометр представляет собой вертикально расположенную проводящую катушку радиуса r , имеющую N витков. В центре катушки помещен компас. Так как магнитная стрелка компаса может вращаться только в горизонтальной плоскости, то она будет реагировать только на горизонтальную составляющую магнитного поля в центре катушки

Первоначально, пока источник питания отключен и стрелка компаса, предоставленная самой себе, ориентирована вдоль магнитного меридиана, плоскость катушки тангенс-гальванометра должна быть также установлена вдоль магнитного меридиана.

 

.

 

Если при этих условиях через катушку тангенс-гальванометра пропустить электрический ток, он вызовет появление магнитного поля катушки с индукцией , причем в центре катушки вектора и II будут взаимно перпендикулярны. Магнитная срелка отклонится от своего первоначального положения и установится в направлении результирующего вектора : = II+ (см. рис.39.4).

Из рис.39.4 видно, что индукции и II связаны соотношением: .

Поскольку катушка тангенс-гальванометра представляет собой круговой ток, то значение индукции поля, создаваемого в центре катушки, можно найти по формуле: ,

где N – число витков катушки тангенс–гальванометра, I – сила тока, протекающего через катушку.

Используя две последние формулы легко получить расчетную формулу для горизонтальной составляющей магнитной индукции магнитного поля Земли: BII = .

Порядок выполнения работы

1. Соберите экспериментальную схему установки (рис.39.3).

2. Совместите плоскость катушки тангенс-гальванометра с направлением магнитной стрелки.

3. Показав собранную цепь преподавателю или лаборанту, включите в сеть источник питания и переключателем (К) замкните цепь.

4. Установите с помощью реостата (R) такой ток через тангенс-гальванометр, при котором магнитная стрелка отклонится на угол от первоначального направления.

5. Не изменяя величины тока измените его направление на противоположное с помощью переключателя (К) и снова измерьте угол отклонения магнитной стрелки .

6. Повторите эксперимент, начиная с пункта 4 для других значений токов (5÷10 значений), при которых отклонения стрелки составляют 350 ÷ 600.

 

Обработка результатов измерений

1. Вычислите . Результаты измерений и вычислений занесите в таблицу. Покажите, что при указанном способе определения угла отклонения исключается систематическая ошибка, связанная с неточной установкой магнитной стрелки в плоскости катушки тангенс-гальванометра.

2. По данным таблицы, для всех случаев рассчитайте величину индукции II.

3. Найдите среднее значение < ВII > и оцените II

Контрольные вопросы

 

s Какова величина магнитной индукции в центре кругового тока?

s Как ориентированы силовые линии магнитного поля Земли?