Ошибки выборочного наблюдения

Между признаками выборочной совокупности и признаками генеральной совокупности, как правило, существует некоторое расхождение, которое называется ошибкой статистического наблюдения. При массовом наблюдении ошибки неизбежны, но возникают они в результате действия различных причин. Величина возможной ошибки выборочного признака происходит из-за ошибок регистрации и ошибок репрезентативности. Ошибки регистрации, или технические ошибки, связаны с недостаточной квалификацией наблюдателей, неточностью подсчетов, несовершенством приборов и т. п.

Под ошибкой репрезентативности (представительства) понимают расхождение между выборочной характеристикой и предполагаемой характеристикой генеральной совокупности. Ошибки репрезентативности бывают случайными и систематическими. Систематические ошибки связаны с нарушением установленных правил отбора. Случайные ошибки объясняются недостаточно равномерным представлением в выборочной совокупности различных категорий единиц генеральной совокупности.

В результате первой причины выборка легко может оказаться смещенной, так как при отборе каждой единицы допускается ошибка, всегда направленная в одну и ту же сторону. Эта ошибка получила название ошибки смещения. Ее размер может превышать величину случайной ошибки. Особенность ошибки смещения состоит в том, что, являясь постоянной частью ошибки репрезентативности, она увеличивается с увеличением объема выборки. Случайная же ошибка с увеличением объема выборки уменьшается. Кроме того, величину случайной ошибки можно определить, тогда как размер ошибки смещения практически определить очень сложно, а иногда и невозможно, поэтому важно знать причины, вызывающие ошибку смещения, и предусмотреть мероприятия по ее устранению.

Ошибки смещения бывают преднамеренные и непреднамеренные. Причиной возникновения преднамеренной ошибки является тенденциозный подход к выбору единиц из генеральной совокупности. Чтобы не допустить появление такой ошибки, необходимо соблюдать принцип случайности отбора единиц.

Непреднамеренные ошибки могут возникать на стадии подготовки выборочного наблюдения, формирования выборочной совокупности и анализа ее данных. Чтобы не допустить появление таких ошибок, необходима хорошая основа выборки, т. е. та генеральная совокупность, из которой предполагается производить отбор, например список единиц отбора. Основа выборки должна быть достоверной, полной и соответствовать цели исследования, а единицы отбора и их характеристики должны соответствовать действительному их состоянию на момент подготовки выборочного наблюдения. Нередки случаи, когда в отношении некоторых единиц, попавших в выборку, трудно собрать сведения из-за их отсутствия на момент наблюдения, нежелания дать сведения и т. п. В таких случаях эти единицы приходится заменять другими. Необходимо следить, чтобы замена осуществлялась равноценными единицами.

Случайная ошибка выборки возникает в результате случайных различий между единицами, попавшими в выборку, и единицами генеральной совокупности, т. е. она связана со случайным отбором. Теоретическим обоснованием появления случайных ошибок выборки является теория вероятностей и ее предельные теоремы.

Сущность предельных теорем состоит в том, что в массовых явлениях совокупное влияние различных случайных причин на формирование закономерностей и обобщающих характеристик будет сколь угодно малой величиной или практически не зависит от случая. Так как случайная ошибка выборки возникает в результате случайных различий между единицами выборочной и генеральной совокупностей, то при достаточно большом объеме выборки она будет сколь угодно мала.

Предельные теоремы теории вероятностей позволяют определять размер случайных ошибок выборки. Различают среднюю (стандартную) и предельную ошибку выборки. Под средней (стандартной) ошибкой выборки понимают такое расхождение между средней выборочной и генеральной совокупностями (~ —), которое не превышает ±.Предельной ошибкой выборки принято считать максимально возможное расхождение (~ —), т. е. максимум ошибки при заданной вероятности ее появления.

В математической теории выборочного метода сравниваются средние характеристики признаков выборочной и генеральной совокупностей и доказывается, что с увеличением объема выборки вероятность появления больших ошибок и пределы максимально возможной ошибки уменьшаются. Чем больше обследуется единиц, тем меньше будет величина расхождений выборочных и генеральных характеристик. На основании теоремы, доказанной П.Л. Чебышевым, величину стандартной ошибки простой случайной выборки при достаточно большом объеме выборки (n) можно определить по формуле

– стандартная ошибка.

Из этой формулы средней (стандартной) ошибки простой случайной выборки видно, что величина зависит от изменчивости признака в генеральной совокупности (чем больше вариация признака, тем больше ошибка выборки) и от объема выборки n (чем больше обследуется единиц, тем меньше будет величина расхождений выборочных и генеральных характеристик).

Академик A.M. Ляпунов доказал, что вероятность появления случайной ошибки выборки при достаточно большом ее объеме подчиняется закону нормального распределения. Эта вероятность определяется по формуле

В математической статистике употребляют коэффициент доверия t, значения функции F(t) табулированы при разных его значениях, при этом получают соответствующие уровни доверительной вероятности (табл. 6.1).

 

17. Малые выборки.

Принято считать, что начало С. м. в. или, как ее часто называют, статистике «малых п»,было положено в первом десятилетии XX века публикацией работы У. Госсета, в к-рой он поместил t-распределение, постулированное получившим чуть позже мировую известность «студентом». В то время Госсет работал статистиком на пивоваренных заводах Гиннесса. Одна из его обязанностей заключалась в том, чтобы анализировать поступающие друг за другом партии бочонков только что сваренного портера. По причине, к-рую он никогда толком не объяснял, Госсет экспериментировал с идеей существенного сокращения числа проб, отбираемых из очень большого количества бочек, находящихся на складах пивоварни, для выборочного контроля качества портера. Это и привело его к постулированию t-распределения. Так как устав пивоваренных заводов Гиннесса запрещал публикацию их работниками результатов исслед., Госсет опубликовал результаты своего эксперимента по сравнению выборочного контроля качества с использованием t-распределения для малых выборок и традиционного z-распределения (нормального распределения) анонимно, под псевдонимом «Студент» (Student — откуда и пошло название t -распределение Стьюдента).

t-распределение.Теория t-распределения, подобно теории z-распределения, используется для проверки нулевой гипотезы о том, что две выборки представляют собой просто случайные выборки из одной генеральной совокупности и, следовательно, вычисленные статистики (напр., среднее и стандартное отклонение) яв-ся несмещенными оценками параметров генеральной совокупности. Однако, в отличие от теории нормального распределения, теория t-распределения для малых выборок не требует априорного знания или точных оценок математического ожидания и дисперсии генеральной совокупности. Более того, хотя проверка различия между средними двух больших выборок на статистическую значимость требует принципиального допущения о нормальном распределении характеристик генеральной совокупности, теория t-распределения не требует допущений относительно параметров.

Общеизвестно, что нормально распределенные характеристики описываются одной единственной кривой — кривой Гаусса, к-рая удовлетворяет следующему уравнению:

.

 

 

При t-распределении целое семейство кривых представлено следующей формулой:

.

 

Вот почему уравнение для t включает гамма-функцию, которая в математике означает, что при изменении п данному уравнению будет удовлетворять другая кривая.

Степени свободы

В уравнении для t буквой п обозначается число степеней свободы (df), сопряженных с оценкой дисперсии генеральной совокупности (S2), к-рая представляет собой второй момент любой производящей функции моментов, такой, напр., как уравнение для t-распределения. В С. число степеней свободы указывает на то, сколько характеристик осталось свободным после их частичного использования в конкретном виде анализа. В t-распределении одно из отклонений от выборочного среднего всегда фиксировано, так как сумма всех таких отклонений должна равняться нулю. Это сказывается на сумме квадратов при вычислении выборочной дисперсии как несмещенной оценки параметра S2 и ведет к тому, что df получается равным числу измерений минус единица для каждой выборки. Отсюда, в формулах и процедурах вычисления t-статистики для проверки нулевой гипотезы df = n - 2.

F-pacnpeделение.Проверяемая с помощью t-критерия нулевая гипотеза состоит в том, что две выборки были случайным образом извлечены из одной генеральной совокупности или же были случайно извлечены из двух разных совокупностей с одинаковой дисперсией. А что делать, если нужно провести анализ большего числа групп? Ответ на этот вопрос искали в течение двадцати лет после того, как Госсет открыл t-распределение. Два самых выдающихся статистика XX столетия непосредственно причастны к его получению. Один — крупнейший английский статистик Р. А. Фишер, предложивший первые теорет. формулировки, развитие к-рых привело к получению F-распределения; его работы по теории малых выборок, развивающие идеи Госсета, были опубликованы в середине 20-х годов (Fisher, 1925). Другой — Джордж Снедекор, один из плеяды первых американских статистиков, разработавший способ сравнения двух независимых выборок любого объема посредством вычисления отношения двух оценок дисперсии. Он назвал это отношение F-отношением, в честь Фишера. Результаты исслед. Снедекора привели к тому, что F-распределение стало задаваться как распределение отношения двух статистик с2, каждой со своими степенями свободы:

.

 

Из этого вышли классические работы Фишера по дисперсионному анализу — статистическому методу, явно ориентированному на анализ малых выборок.

Выборочное распределение F (где п = df)представлено следующим уравнением:

.

 

Как и в случае t-распределения, гамма-функция указывает на то, что существует семейство распределений, удовлетворяющих уравнению для F. В этом случае, однако, анализ включает два величины df:число степеней свободы для числителя и для знаменателя F-отношения.

Таблицы для оценивания t- и F-статистик.При проверке нулевой гипотезы с помощью С., основанных на теории больших выборок, обычно требуется только одна справочная таблица — таблица нормальных отклонений (z), позволяющая определить площадь под нормальной кривой между любыми двумя значениями z на оси абсцисс. Однако таблицы для tF-распределений по необходимости представлены комплектом таблиц, поскольку эти таблицы основаны на множестве распределений, полученных вследствие варьирования числа степеней свободы. Хотя t- и F-распределения представляют собой распределения плотности вероятности, как и нормальное распределение для больших выборок, они отличаются от последнего в отношении четырех моментов, используемых для их описания. t-распределение, напр., является симметричным (обратите внимание на t2в его уравнении) при всех df, но становится все более островершинным по мере уменьшения объема выборки. Островершинные кривые (с эксцессом больше нормального) имеют тенденцию быть менее асимптотическими (т. е. меньше приближаться к оси абсцисс на концах распределения), чем кривые с нормальным эксцессом, такие как кривая Гаусса. Это различие приводит к заметным расхождениям между точками на оси абсцисс, соответствующими значениям t и z. При df = 5 и двустороннем уровне а, равном 0,05, t = 2,57, тогда как соответствующее z = 1,96. Следовательно, t = 2,57 свидетельствует о статистической значимости на 5% уровне. Однако в случае нормальной кривой z = 2,57 (точнее 2,58) будет уже указывать на 1% уровень статистической значимости. Аналогичные сравнения можно провести и с F-распределением, поскольку t равно F в случае, когда число выборок равно двум.