Измерительные приборы, применяемые в комплекте с термопреобразователями сопротивления

 

В качестве измерительных приборов термометров сопротивления применяются логометры, а также уравновешенные и неуравновешенные мосты. Для полупроводниковых термосопротивлений измерительными приборами обычно служат неуравновешенные мосты [1].

 

Логометры — это магнитоэлектрические приборы, подвижная система которых состоит из двух жесткоскрепленных между собой рамок, расположенных под некоторым углом друг другу (в предельном случае в одной плоскости).

Угол поворота такой подвижной системы есть функция отно­шения токов в обеих рамках:

f = f(I1/ I2),

 

где I1, I2 - токи, протекающие по рамкам.

В определенных пределах колебания напряжения источника питания не влияют на показания прибора [1].

Таким образом, в логометре совмещены достоинства уравнове­шенных (независимость от колебаний напряжения источника питания) и неуравновешенных мостов (непосредственное измерение).

Рассмотрим схему логометра (рис. 11). Постоянный магнит снабжен полюсными наконечниками N и S с эллиптическими выточками. Центры выточек полюсных наконечников смещены относительно центра сердечника. Между полюсными наконеч­никами расположен цилиндрический сердечник из мягкой стали, вокруг которого вращается подвижная система из двух рамок - R1 и R2. К рамкам прикреплена стрелка, перемещающаяся вдоль шкалы, проградуированной в градусах. Воздушный зазор между полюсными наконечниками и сердечником неравномерен. Поэтому магнитная индукция меняется (наибольшее значение в середине полюсных наконечников, наименьшее - у края), являясь функ­цией угла поворота от среднего положения.

К рамкам подводится ток от общего источника питания (сухой батареи). В рамку R1 ток поступает через постоянное сопротивление R, в рамку R2через сопротивление термометра Rt. Напра­вление токов I1 и I2 таково, что вращающие моменты рамок оказываются направленными навстречу один другому и соответственно равны:

 

M1= c1B1I1; M2 = с2B2I2,

 

где с1и с2 - постоянные, зависящие от геометрических разме­ров и числа витков рамок; B1 и В2 — магнитные индукции в зоне расположения рамок [1].

Если сопротивление рамок одина­ково и R = Rt, то I1 = I2, т. е. вра­щающие моменты рамок равны. При этом подвижная система нахо­дится в среднем положении.

При изменении сопротивления Rt термометра вследствие нагрева (или охлаждения), через одну из рамок потечет ток большей вели­чины, равенство моментов нарушится, и подвижная система начнет поворачиваться в сторону действия большего момента. При вра­щении подвижной системы рамка, по которой течет ток большей величины, попадает в зазор с меньшей магнитной индукцией, вследствие чего действующий на нее момент уменьшается. Наобо­рот, другая рамка входит в зазор с большой магнитной индукцией, и ее момент увеличивается. Вращение рамок продолжается до тех пор, пока их вращающие моменты станут снова равными.

Для рамок одинаковой конструкции из соотношения М12 таким образом имеем:

.

 

При изменении Rt изменяется отношение I1/I2. Рамки вращаются до тех пор, пока при новом положении рамок отношение В21 не сравняется с соотношением I1/I2.

 

 

Уравновешенные мосты

 

Мост (рис. 12) состоит из двух постоянных сопротивлений R1 и R3, сопротивления R2 (реохорда) и сопротивления термометра Rt. Сопротивле­ния двух соединительных проводов 2Rnp при­бавляются к сопротивлению Rt. В одну диаго­наль моста включен источник постоянного тока (сухая батарея), а в другую — нуль-прибор [1].

 

 

Рис. 12. Принципиальная схема уравновешенного моста с термометром сопротивления. (двухпроводная схема)

 

 

При равновесии моста, ко­торое достигается перемещением движка по реохорду, ток в диа­гонали моста Iо = 0. В этом случае потенциалы на вершинах моста b и d равны, ток от источ­ника пита­ния I разветвляется в вершине моста на две ветви R1 и R3, паде­ние напряжения на сопротивле­ниях R1 и R3 одинаково:

 

R1I1 = R3I3. (1)

 

Падения напряжения на плечах моста bc и cd также равны:

 

I2R2 = It(Rt + 2Rnp). (2)

 

Разделив равенство (1) на равенство (2), получим

 

. (3)

 

При Iо = 0, Ii = I2 и Iз = It уравнение (3) примет вид

 

R1 (Rt + 2Rпр) = R2R3.

 

Сопротивление термометра будет составлять:

 

 
 

 


Если считать, что температура окружающей среды не изме­няется, то 2Rпp будет постоянным. Тогда уравнение (4) примет вид

 
 

 

 


При изменении сопротивления Rt мост можно уравновесить изменением величины сопротивления реохорда R2.

Это была, так называемая, двухпроводная схема включения ТС в измерительный мост.