Математическое моделирование процессов теплообмена в двигателях внутреннего сгорания

 

Выполнение второго раздела задания предполагает знание студентами следующих вопросов: основные газовые процессы, второй закон термодинамики, круговые процессы. Перед началом расчетов необходимо изучить указанные вопросы по рекомендуемой литературе.

Циклом или круговым процессом называют совокупность термодинамических процессов, в результате осуществления которых рабочее тело возвращается в исходное состояние. Работа кругового процесса l0 изображается в р-v диаграмме (рис. 2) площадью, заключенной внутри замкнутого контура цикла. В результате осуществления прямого цикла (направление по часовой стрелке) совершается положительная работа. При обратном цикле (против часовой стрелки) работа считается отрицательной. Прямой цикл характерен для тепловых двигателей (l0>0), обратный – для холодильных установок (l0<0).

Если обозначить через q1 и q2 соответственно количество подведенного и отведенного от рабочего тела тепла, то полезно использованное в цикле тепло найдется по формуле

. (2.1)

Это количество теплоты в диаграмме T-s изображается площадью, заключенной внутри замкнутого цикла (рис. 3). Эта же площадь представляет собой и величину работы за один цикл. Степень совершенства процесса превращения теплоты в работу в круговых процессах характеризуется термическим к.п.д.

 

(2.2)

Рис. 2 Рис. 3

В поршневых ДВС рабочим телом являются смесь воздуха и горючих газов или паров жидкого топлива (на начальном участке цикла) и газообразные продукты сгорания (на остальных участках цикла). Поршневые ДВС делятся на двухтактные, у которых один рабочий ход приходится на два хода поршня, и четырехтактные с одним рабочим ходом на четыре хода поршня. Кроме того, поршневые ДВС подразделяются на двигатели с подводом теплоты при постоянном давлении (постепенного сгорания), с подводом теплоты при постоянном объеме (быстрого сгорания) и двигатели, работающие по смешанному циклу.

Цикл ДВС с подводом теплоты при постоянном объеме (цикл Отто). Принцип действия двигателей с подводом теплоты при v=const ясен из рис. 4, на котором изображены схема и индикаторная диаграмма четырехтактного двигателя. Идеализированный рабочий цикл как двухтактных, так и четырехтактных карбюраторных двигателей (двигателей быстрого сгорания) при v=const (при условии, что он осуществляется 1 кг рабочего тела) изображается на р-v и T-s диаграммах, как указано на рис. 5 и 6.

Рис. 4 Рис. 5

Рис. 6

Действительный разомкнутый цикл состоит из процессов: o-a – всасывание; a-b – сжатие рабочей смеси; b-c – горение топлива, воспламененного от электрической искры, и подвод теплоты; c-d – рабочий ход, осуществляемый при расширении продуктов сгорания; d-е-o – отвод теплоты, соответствующий в четырехтактных двигателях выхлопу газов и всасыванию новой порции рабочей смеси, а в двухтактных – выхлопу и продувке цилиндра.

На диаграммах: 1-2 – адиабатное сжатие рабочего тела; 2-3 – изохорный подвод теплоты; 3-4 – адиабатное расширение рабочего тела; 4-1 – условный изохорный процесс отвода теплоты, эквивалентный выпуску отработанных газов.

Задаваемые параметры цикла Отто:

- степень сжатия (отношение всего объема цилиндра к объему камеры сжатия);

- степень повышения давления (температуры) при подводе теплоты;

р1, Т1 – начальные параметры.

Параметры рабочего тела для идеального газа, теплоемкость сv которого считается постоянной, будут следующими:

В точке 1:

В точке 2:

В точке 3:

В точке 4:

 

Расчет подведенной и отведенной теплоты и работы за цикл проводится по формулам:

 

(2.3)

(2.4)

 

Термический к.п.д. цикла находят по формуле:

 

(2.5)

 

Термический к.п.д. двигателей, работающих по циклу Отто, зависит только от степени сжатия e и с ее увеличением возрастает. Практически повышение степени сжатия ограничивается температурой самовоспламенения сжимаемой в цилиндре рабочей смеси и детонационной стойкостью топлива. Степень сжатия в реальных двигателях такого типа не превышает 10.

Цикл ДВС с подводом теплоты при постоянном давлении (цикл Дизеля). В отличие от цикла Отто, в ДВС с подводом теплоты при p=const сжимается не горючая смесь, а воздух, и затем, с получением высоких давления и температуры, обеспечивается самовоспламенение распыленного в цилиндре топлива. В этом случае процесс горения затягивается, и двигатели такого типа характеризуются постепенным (или медленным) сгоранием топлива при постоянном давлении.

Цикл Дизеля изображен на рис. 7 и 8. Идеализированный цикл такого ДВС осуществляется следующим образом: рабочее тело (воздух) сжимается по адиабате 1-2; изобарный процесс 2-3 соответствует процессу горения топлива, т.е. подводу теплоты; рабочий ход выражен адиабатным расширением продуктов сгорания 3-4; изохора 4-1 характеризует отвод теплоты, заменяя для четырехтактных двигателей выхлоп продуктов сгорания и всасывание новой порции воздуха, а для двухтактных – выхлоп и продувку цилиндра.

Рис.7 Рис.8

Задаваемые параметры цикла Дизеля:

- степень сжатия;

- степень предварительного расширения при подводе теплоты;

р1, Т1 – начальные параметры.

Параметры рабочего тела для идеального газа с постоянной теплоемкостью определяются следующими зависимостями:

В точке 1: р1, Т1,

В точке 2:

В точке 3:

В точке 4:

Расчет подведенной и отведенной теплоты и работы за цикл проводится по формулам:

 

(2.6)

(2.7)

 

Термический к.п.д. цикла Дизеля находят по формуле:

 

(2.8)

Термический к.п.д. двигателей, работающих по циклу Дизеля, зависит: от степени сжатия e, с увеличением которой к.п.д. возрастает; степени предварительного расширения r, с увеличением которой к.п.д. уменьшается. Нижний предел e определен необходимостью получения в конце сжатия температуры, значительно превышающей температуру самовоспламенения топлива (eк-1воспл1). Верхний предел e ограничен допустимым давлением в цилиндре, превышение которого приводит к утяжелению конструкции и увеличению потерь на трение. Степень сжатия в реальных двигателях такого типа достигает 20.

Цикл ДВС со смешанным подводом тепла (цикл Тринклера). В ДВС со смешанным подводом теплоты сочетаются преимущества как цикла Отто, так и цикла Дизеля. Схема бескомпрессорного дизеля, работающего по циклу Тринклера, приведена на рис. 9. В таком дизеле распыл топлива производится топливным насосом высокого давления, а компрессор, применяемый при пневматическом распыле топлива, отсутствует. Идеализированный цикл такого ДВС изображен на рис. 10 и 11 и осуществляется по следующей схеме: адиабата 1-2 соответствует сжатию в цилиндре воздуха до температуры, превышающей температуру самовоспламенения топлива; изохора 2-3 соответствует процессу горения топлива, впрыскиваемого в цилиндр, а изобара 3-4 изображает процесс горения остальной части топлива по мере поступления его из форсунки; расширение продуктов сгорания идет по адиабате 4-5; изохора 5-1 соответствует выхлопу отработанных газов в атмосферу.

Рис. 9

Рис. 10 Рис. 11

 

Задаваемые параметры цикла Тринклера:

р1, Т1 – начальные параметры.

Параметры рабочего тела для идеального газа с постоянной теплоемкостью определяются следующими зависимостями:

В точке 1: р1, T1,

В точке 2:

В точке 3:

В точке 4:

В точке 5:

 

Расчет подведенной и отведенной теплоты и работы за цикл проводится по формулам:

(2.9)

(2.10)

 

Термический к.п.д. цикла находят по формуле:

(2.11)

Термический к.п.д двигателей, работающих по циклу Тринклера, как и термический к.п.д двигателей, работающих по циклам Отто и Дизеля, возрастает с увеличением степени сжатия e и, кроме того, зависит от l и r. Степень сжатия в реальных двигателях такого типа достигает 18.

Функции состояния рабочего тела для идеального газа с постоянной теплоемкостью определяются следующими зависимостями:

(2.12)

(2.13)

(2.14)

где: Тн и рн – температура и давление при нормальных физических условиях (н.у.);

R – индивидуальная газовая постоянная воздуха.

При расчетах циклов ДВС необходимо знать зависимости между параметрами состояния в различных процессах. Эти зависимости приводятся в таблице 4.

Таблица 4