Как заменить предохранители. 7 страница

Рис. 7.4

Из векторной диаграммы видно, что:

1л = v3 1ф при симметричной нагрузке.

Трехфазные цепи, соединенные звездой, получили большее распространение, чем трехфазные цепи, соединенные треугольником. Это объясняется тем, что, во-первых, в цепи, соединенной звездой, можно получить два напряжения: линейное и фазное. Во-вторых, если фазы обмотки электрической машины, соединенной треугольником, находятся в неодинаковых условиях, в обмотке появляются дополнительные токи, нагружающие ее. Такие токи отсутствуют в фазах электрической машины, соединенных по схеме "звезда". Поэтому на практике избегают соединять обмотки трехфазных электрических машин в треугольник.

Электрические машины переменного тока. Асинхронные двигатели.

Электрические машины переменного тока.

Асинхронные двигатели.

Конструкция, принцип действия.

Асинхронный двигатель имеет неподвижную часть, именуемую статором, и вращающуюся часть, называемую ротором.. В статоре размещена обмотка, создающая вращающееся магнитное поле.

Различают асинхронные двигатели с короткозамкнутым и фазным ротором.

В пазах ротора с короткозамкнутой обмоткой размещены алюминиевые или медные стержни. По торцам стержни замкнуты алюминиевыми или медными кольцами. Статор и ротор набирают из листов электротехнической стали, чтобы уменьшить потери на вихревые токи.

Фазный ротор имеет трехфазную обмотку (для трехфазного двигателя). Концы фаз соединены в общий узел, а начала выведены к трем контактным кольцам, размещенным на валу. На кольца накладывают неподвижные контактные щетки. К щеткам подключают пусковой реостат. После пуска двигателя сопротивление пускового реостата плавно уменьшают до нуля.

Принцип действия асинхронного двигателя рассмотрим на модели, представленной на рисунке 12.4.

Рис. 12.4

Вращающееся магнитное поле статора представим в виде постоянного магнита, вращающегося с синхронной частотой вращения n1.

В проводниках замкнутой обмотки ротора индуктируются токи. Полюса магнита перемещаются по часовой стрелке.

Наблюдателю, разместившемуся на вращающемся магните, кажется, что магнит неподвижен, а проводники роторной обмотки перемещаются против часовой стрелки.

Направления роторных токов, определенные по правилу правой руки, указаны на рис. 12.4. Пользуясь правилом левой руки, найдем направление электромагнитных сил, действующих на ротор и заставляющих его вращаться. Ротор двигателя будет вращаться с частотой вращения п2 в направлении вращения поля статора.

Ротор вращается асинхронно т.е частота вращения его п2 меньше частоты вращения поля статора n1.

Относительная разность скоростей поля статора и ротора называется скольжением.

Скольжение не может быть равным нулю, так как при одинаковых скоростях поля и ротора прекратилось бы наведение токов в роторе и, следовательно, отсутствовал бы электромагнитный вращающий момент.

Вращающий электромагнитный момент уравновешивается противодействующим тормозным моментом Мэм = М2.

С увеличением нагрузки на валу двигателя тормозной момент становится больше вращающего, и скольжение увеличивается. Вследствие этого, возрастают индуктированные в роторной обмотке ЭДС и токи.

Вращающий момент увеличивается и становится равным тормозному моменту. Вращающий момент может возрастать с увеличением скольжения до определенного максимального значения, после чего при дальнейшем увеличении тормозного момента вращающий момент резко уменьшается, и двигатель останавливается.

Скольжение заторможенного двигателя равно единице. Говорят, что двигатель работает в режиме короткого замыкания. Частота вращения ненагруженного асинхронного двигателя п2 приблизительно равна синхронной частоте nl. Скольжение ненагруженного двигателя S = 0.

Говорят, что двигатель работает в режиме холостого хода.

Скольжение асинхронной машины, работающей в режиме двигателя, изменяется от нуля до единицы. Асинхронная машина может работать в режиме генератора. Для этого ее ротор необходимо вращать сторонним двигателем в направлении вращения магнитного поля статора с частотой n2 > nl.

Скольжение асинхронного генератора:

Асинхронная машина может работать в режиме электромашинного тормоза. Для этого необходимо ее ротор вращать в направлении, противоположном направлению вращения магнитного поля статора.

В этом режиме S > 1. Как правило, асинхронные машины используются в режиме двигателя. Асинхронный двигатель является наиболее распространенным в промышленности типом двигателя. Частота вращения поля в асинхронном двигателе жестко связана с частотой сети fl и числом пар полюсов статора. При частоте fl = 50 Гц существует следующий ряд частот вращения.

р
n1, об/мин 3 000

Из формулы (12.1) получим

Скорость поля статора относительно ротора называется скоростью скольжения:

Частота тока и ЭДС в роторной обмотке:

 

Асинхронная машина с заторможенным ротором работает как трансформатор.

Основной магнитный поток индуктирует в статорной и в неподвижной роторной обмотках ЭДС

Е1 и Е2к.

где Фт - максимальное значение основного магнитного потока, сцепленного со статорной и роторной обмотками;

W1 и W2 - числа витков статорной и роторной обмоток; fl - частота напряжения в сети;

КО 1 и К02 - обмоточные коэффициенты статорной и роторной обмоток.

Чтобы получить более благоприятное распределение магнитной индукции в воздушном зазоре между статором и ротором, статорные и роторные обмотки не сосредоточивают в пределах одного полюса, а распределяют по окружностям статора и ротора. ЭДС распределенной обмотки меньше ЭДС сосредоточенной обмотки.

Этот факт учитывается введением в формулы, определяющие величины электродвижущих сил обмоток, обмоточных коэффициентов.

Вращающееся магнитное поле.

Электрические машины переменного тока. Вращающееся магнитное поле. Особенностью многофазных систем является возможность создать в механически неподвижном устройстве вращающееся магнитное поле. Катушка, подключенная к источнику переменного тока, образует пульсирующее магнитное поле, т.е. магнитное поле, изменяющееся по величине и направлению.

Рис. 12.1

Возьмем цилиндр с внутренним диаметром D. На поверхности цилиндра разместим три катушки, пространственно смещенные относительно друг друга на 120'. Катушки подключим к источнику трехфазного напряжения (рис. 12.1). На рис. 12.2 показан график изменения мгновенных токов, образующих трехфазную систему.

Рис. 12.2

Каждая из катушек создает пульсирующее магнитное поле. Магнитные поля катушек, взаимодействуя друг с другом, образуют результирующее вращающееся магнитное поле,

характеризующееся вектором результирующей магнитной индукции На рис. 12.3

£

изображены векторы магнитной индукции каждой фазы и результирующий вектор ’ построенные для трех моментов времени 11, t2, t3. Положительные направления осей катушек обозначены +1, +2, +3.

Рис. 12.3

В момент t = tl ток и магнитная индукция в катушке А-Х положительны и максимальны, в катушках B-Y и C-Z - одинаковы и отрицательны. Вектор результирующей магнитной индукции равен геометрической сумме векторов магнитных индукций катушек и совпадает с осью катушки А-Х. В момент t = t2 токи в катушках А-Х и C-Z одинаковы по величине и противоположны по направлению. Ток в фазе В равен нулю. Результирующий вектор магнитной индукции повернулся по часовой стрелке на 30'. В момент t = t3 токи в катушках А-Х и B-Y одинаковы по величине и положительны, ток в фазе C-Z максимален и отрицателен, вектор результирующего магнитного поля размещается в отрицательном направлении оси катушки C-Z. За период переменного тока вектор результирующего магнитного поля повернется на 360'. Линейная скорость перемещения вектора магнитной индукции:

где fl - частота переменного напряжения;

Т - период синусоидального тока;

nl - частота вращения магнитного поля или синхронная частота вращения.

полюсное деление или

За период Т магнитное поле перемещается на расстояние 2, где

расстояние между полюсами магнитного поля по длине окружности цилиндра диаметром D.

Линейная скорость:

откуда

где n 1 - синхронная частота вращения многополюсного магнитного поля с числом пар полюсов Р Катушки, изображенные на рис. 12.1, создают двухполюсное магнитное поле, с числом полюсов 2Р = 2. Частота вращения поля равна 3000 об/мин.

Чтобы получить четырехполюсное магнитное поле, необходимо внутри цилиндра диаметром D поместить шесть катушек, по две на каждую фазу. Тогда, согласно формуле (12.1), магнитное поле будет вращаться в два раза медленней, с nl = 1500 об/мин.

Чтобы получить вращающееся магнитное поле, необходимо выполнить два условия.

1. Иметь хотя бы две пространственно смещенные катушки.

2. Подкмочить к катушкам несовпадающие по фазе токи.

Электрические машины переменного тока.

Синхронные двигатели.

Конструкция, принцип действия.

В отличие от асинхронного двигателя частота вращения синхронного двигателя

постоянная при различных нагрузках. Синхронные двигатели находят применение для привода

машин постоянной скорости (насосы, компресоры, вентиляторы).

В статоре синхронного электродвигателя размещается обмотка, подключаемая к сети трехфазного тока и образующая вращающееся магнитное поле. Ротор двигателя состоит из сердечника с обмоткой возбуждения. Обмотка возбуждения через контактные кольца подключается к источнику постоянного тока. Ток обмотки возбуждения создает магнитное поле, намагничивающее ротор.

Роторы синхронных машин могут быть явнополюсными (с явновыраженными полюсами) и неявнополюсными (с неявновыраженными полюсами). На рис. 12.10а изображен сердечник 1 явнополюсного ротора с выступающими полюсами. На полюсах размещены катушки возбуждения 2. На рисунке 12.106 изображен неявнополюсной ротор, представляющий собой ферромагнитный цилиндр 1. На поверхности ротора в осевом направлении фрезеруют пазы, в которые укладывают обмотку возбуждения 2.

Рис. 12.10

Рассмотрим принцип работы синхронного двигателя на модели (рис. 12.11).

Рис. 12.11

Вращающееся магнитное поле статора представим в виде магнита 1. Намагниченный ротор изобразим в виде магнита 2. Повернем магнит 1 на угол. Северный магнитный полюс магнита 1 притянет южный полюс магнита 2, а южный полюс магнита 1 - северный полюс магнита 2. Магнит 2 повернется на такой же угол. Будем вращать магнит 1. Магнит 2 будет вращаться вместе с магнитом 1, причем частоты вращения обоих магнитов будут одинаковыми, синхронными, п2 = nl.

Синхронный двигатель, на роторе которого отсутствует обмотка возбуждения, называется синхронным реактивным двигателем.

Ротор синхронного реактивного двигателя изготавливается из ферромагнитного материа\а и должен иметь явновыраженные полюсы. Вращающееся магнитное поле статора намагничивает ротор. Явнополюсный ротор имеет неодинаковые магнитные сопротивления по продольной и поперечной осям полюса. Силовые линии магнитного П0х\я статора изгибаются, стремясь пройти по пути с меньшим магнитным сопротивлением. Деформация магнитного поля вызовет, вследствие упругих свойств силовых линий, реактивный момент, вращающий ротор синхронно с полем статора.

Если к вращающемуся ротору приложить тормозной момент, ось магнитного поля ротора повернется на угол относительно оси магнитного поля статора. С увеличением нагрузки этот угол возрастает. Если нагрузка превысит некоторое допустимое значение, двигатель остановится, выпадет из синхронизма. У синхронных двигателей отсутствует пусковой момент. Это объясняется тем, что электромагнитный вращающий момент, воздействующий на неподвижный ротор, меняет свое направление два раза за период Т переменного тока. Из-за своей инерционности, ротор не успевает тронуться с места и развить необходимое число оборотов.

В настоящее время применяется асинхронный пуск синхронного двигателя. В пазах полюсов ротора укладывается дополнительная короткозамкнутая обмотка.

Вращающее магнитное по*\е статора индуктирует в короткозамкнутой пусковой обмотке вихревые токи. При взаимодействии этих токов с магнитным полем статора образуется асинхронный электромагнитный момент, приводящий ротор во вращение. Когда частота вращения ротора приближается к частоте вращения статорного поля, двигате/иь втягивается в синхронизм и вращается с синхронной скоростью. Короткозамкнутая обмотка не перемещается относительно поля, вихревые токи в ней не индуктируются, асинхронный пусковой момент становится равным нулю.

Сельсины.

Сельсином называется информационная электрическая машина переменного тока, вырабатывающая напряжения, амплитуды и фазы которых определяются угловым положением ротора.

Сельсины позволяют осуществить без общего механического ва\а согласованное вращение или поворот механизмов. Известны два режима работы сельсинов: индикаторный и трансформаторный. При работе сельсинов в индикаторном режиме происходит передача на расстояние утла поворота механической системы. При работе сельсинов в трансформаторном режиме передается сигнал, воздействующий на исполнительный механизм таким образом, чтобы заставить его отработать заданный поворот.

Рассмотрим устройство и принцип действия однофазных двухполюсных контактных сельсинов. Однофазная обмотка возбуждения, включенная в сеть переменного тока, расположена на явнополюсном статоре. На роторе размещены три пространственно смещенные относительно друг друга под утлом 120* катушки синхронизации. Концы катушек соединены в общий узел, нача\а катушек выведены на контактные кольца. Обмотка возбуждения создает пульсирующий магнитный поток. Этот поток индуктирует трансформаторные ЭДС в катушках синхронизации. Наибольшая ЭДС индуктируется в катушке, ось которой совпадает с осью пульсирующего потока. При отклонении оси катушки ЭДС уменьшается по синусоидальному закону. Величина и фаза ЭДС в каждой катушке зависит от утла поворота ротора сельсина.

Рис. 13.1

На рис. 13.1 приведена схема соединения однофазных сельсинов при индикаторном режиме работы.

В схеме используются сельсин - датчик и сельсин - приемник, представляющие собой два совершенно одинаковых сельсина.

ОВд и ОВп - обмотки возбуждения сельсина - датчика и сельсина - приемника. Сд и Сп -катушки синхронизации.

Если роторы обоих сельсинов ориентированны одинаковым образом относительно обмоток возбуждения, то в каждой паре катушек индуктируются одинаковые ЭДС. Катушки роторов обоих сельсинов соединены таким образом, что ЭДС в них направлены встречно друг другу, и ток в соединительных проводах отсутствует. Такое положение сельсинов называется согласованным.

Если необходимо осуществить дистанционную передачу утла поворота к механизму, требующему большого вращающего момента, то используется схема трансформаторного режима работы сельсинов (рис. 13.2).

 

 

Рис. 13.2

Обмотка возбуждения сельсина - датчика подключается к источнику однофазного тока.

Катушки синхронизации датчика соединены с катушками синхронизации приемника, который работает как сельсин - трансформатор. Катушки синхронизации СП являются первичной обмоткой, а статорная обмотка ОВП - вторичной (выходной) обмоткой. Она через усилитель у соединяется с исполнительным двигателем. Исполнительный двигатель через редуктор связан с валом сельсина - приемника.

Обмотка возбуждения датчика образует пульсирующий по горизонтали магнитный поток. В катушках СД индуктируются ЭДС, которые создают токи в роторных катушках датчика и приемника. Каждая катушка синхронизации сельсина - приемника создает свой магнитный поток, а результирующий магнитный поток имеет такое же направление, как и поток в сельсине

- датчике.

В обмотке возбуждения сельсина - приемника индуктируется ЭДС, величина и фаза которой зависят от утла и направления результирующего потока обмотки синхронизации приемника. Ось обмотки возбуждения приемника сдвинута на 90* относительно оси обмотки возбуждения датчика, поэтому, когда магнитный поток направлен горизонтально, в обмотке приемника ОВП не возникает никакой ЭДС. Это согласованное положение в трансформаторном режиме. Исполнительный механизм и сельсин - датчик не нуждаются в механической связи и могут находиться на большом расстоянии друг от друга.

Электрические системы дистанционной передачи утла поворота или вращения механизмов используются в радиолокаторах, в радиопеленгаторах и другой специальной технике.

Поворотные трансформаторы.

Индуктосины. Редуктосины.

Поворотным, или вращающимся, трансформатором называется информационная электрическая машина, амплитуда выходного напряжения которой является функцией входного напряжения и углового положения ротора. Поворотные трансформаторы конструктивно сходны с асинхронными машинами с фазным ротором и контактными кольцами. К ним обычно подводится питание со стороны статора от источника переменного напряжения. На обмотке ротора (на выходе) получают напряжение, представляющее собой определенную функцию утла поворота ротора.

Обычно требуется, чтобы это напряжение было пропорционально sin, cos. В соответствии с этим, различают синусные, косинусные и синус - косинусные трансформаторы. На рис. 13.3 представлена принципиа\ьная схема поворотного трансформатора с двумя взаимно -перпендикулярными обмотками на статоре и на роторе.

Рис. 13.3

Индукционный редуктосин представляет собой бесконтактный синус-косинусный поворотный трансформатор. Первичная и две вторичные обмотки размещены на статоре. Ротор выполнен в виде зубчатого кольца из электротехнической стали.

Редуктосины не имеют скользящих контактов, что повышает надежность и точность их работы. При питании первичной обмотки синусоидальным напряжением со вторичных обмоток снимают два напряжения, амплитуды которых изменяются в функции утла поворота ротора. Повороту ротора на угол, равный зубцовому делению, соответствует полный период изменения амплитуды выходного напряжения (зубцовым делением ротора называется расстояние между зубцами ротора).

Индуктосином называют бесконтактную информационную машину без магнитопровода с печатными первичной и вторичной обмотками, возбуждаемую однофазным напряжением. Выходное напряжение индуктосина является функцией углового положения ротора. Конструктивно индуктосин представляет собой два диска (ротор и статор) из изоляционного материа\а (керамика, стекло). Один из дисков соединяется с валом, угловое положение которого подлежит изменению, второй неподвижен. На торцевых поверхностях, обращенных друг к другу, диски несут печатные обмотки.

Поворотные трансформаторы используются в электрических счетно-решающих системах, в следящих системах в качестве датчиков утла, в преобразователях "угол-код", в системах числового и программного управления металлорежущими станками.

Тахогенераторы.

Тахогенератором называется информационная электрическая машина, предназначенная для выработки электрических сигналов, пропорциональных частоте вращения ротора. Тахогенераторы могут быть постоянного и переменного тока. Тахогенераторы постоянного тока представляют собой маломощные генераторы постоянного тока с независимым возбуждением или с возбуждением от постоянных магнитов. Выходное напряжение тахогенератора пропорционально частоте вращения ротора.

Асинхронный тахогенератор по конструктивному исполнению подобен асинхронному двигателю с полым немагнитным ротором. Он состоит из статора и неподвижного сердечника ротора, между которыми, в воздушном зазоре вращается тонкий полый немагнитный цилиндр. Принципиальная схема асинхронного тахогенератора показана на рис. 13.4.

Рис. 13.4

На статоре генератора размещены две обмотки, пространственно смещенные относительно друг друга на 90*. Одна из них, обмотка возбуждения В, подключена к источнику синусоидального напряжения, другая обмотка, являющаяся генератором Г, включается на измерительный прибор или на измерительную схему. Обмотка возбуждения создает пульсирующий магнитный поток Фв.

При неподвижном роторе ЭДС в генераторной обмотке равна нулю, так как вектор магнитного потока Фв перпендикулярен оси этой обмотки. При вращении цилиндра пульсирующий магнитный поток индуктирует в нем ЭДС вращения. Под действием ЭДС в цилиндре появляются токи, направления которых указаны на рис. 13.4. Токи создают по оси генераторной обмотки пульсирующий поперечный поток Фп. Этот поток индуктирует в генераторной обмотке ЭДС, пропорциональную частоте вращения цилиндра. Асинхронные тахогенераторы, как и тахогенераторы постоянного тока, используются для измерения скорости вращения ва\ов, а также для вырабатывания ускоряющих или замедляющих сигналов в автоматических устройствах.

Шаговые электродвигатели.

Шаговым электродвигателем называется вращающийся электродвигатель с дискретными угловыми перемещениями ротора, осуществляемыми за счет импульсов сигна\а управления.

Шаговые, или импульсные, электродвигатели преобразуют электрические импульсы в фиксированные угловые перемещения - "шаги".

Шаговые двигатели находят применение в различных механизмах, рабочие органы которых должны перемещаться дискретно. К таким механизмам относятся киносъемочная и проекционная аппаратура, механизмы подачи различных станков, устройства перемещения валков прокатных станов и др.

Шаговые электродвигатели с активным ротором имеют ротор, выполненный из постоянных магнитов (рис. 13.5). Статор имеет выступающие полюсы с сосредоточенной обмоткой в виде катушек на каждом полюсе. Питание статорных катушек производится импульсами напряжения, поступающими с электронного коммутатора.

Рис. 13.5

Основы электроники. В приложении (решили, что нет смысла повторять материал).

В нескольких главах да и книгах невозможно описать всю электронику.

Поэтому мы с коллегами решили выделить наиболее важные понятия из занимательного мира электроники которым и будут посвящены следующие главы книги.

** Задачи этого курса

1. Базовая часть

2. Основные компоненты / Принципы работы

3. Методы измерений

** Напутствие

Помните, - слона едят по кусочку -, не торопитесь осваивайте главу за главой, не разобравшись в простых компонентах освоить материал будет очень сложно.

В приложении (решили, что нет смысла повторять материал).

Проверка диодов и транзисторов

Два способа, которые помогут достаточно точно определить «здоровье» транзистора и диода. Один основан на проверке сопротивления, другой - напряжения. Советуем последовательно применить оба.

Сначала определяем сопротивление между выводами всех транзисторов и диодов.

Транзистор исправен, если сопротивление, замеренное между двумя его любыми выводами, больше нуля, но меньше 500 кипоОм. При этом оно должно измениться, если поменять местами концы проводов, идущих от прибора. Признак неисправности - крайние положения («0» или «бесконечность») стрелки. Для этих замеров нужно тарировать прибор на измерение минимальных величин.

Диод исправен, если при проверке его сопротивления с переменой местами концов проводов, идущих от прибора, мы в одном случае получим не более 100-200 Ом, в другом - сотни кипоОм. О неисправности свидетельствуют одинаковые показания независимо от того, будет пи это «0» или «бесконечность».

Затем - проверка вторым способом. Для нее нужно собрать две очень простые схемы (рис. 1 и 2). В качестве источника напряжения подойдет обычная автомобильная аккумуляторная батарея. Первая схема предназначена для проверки транзисторов. Величина нагрузочного сопротивления «R» - порядка 40-50 Ом. Если все исправно, напряжение на выводах эмиттер - коллектор должно быть больше «0»

Схема для проверки транзисторов: Т - транзистор; Э - эмиттер; К - коллектор; Б - база; R - сопротивление;

П - прибор; А - аккумуляторная батарея.

Схема для проверки диодов; Д - диод.

Другой вариант;

Это просто сделать при помощи несложной схемы с лампочкой 3 В и батарейкой КБС для карманного фонарика. Испытательная цепь включается между базой и коллектором транзистора. При этом провода от его выводов нужно будет отпаять. «Минус» батарейки соединяется с базой, а «плюс» - с коллектором транзистора. Если он исправен - лампочка горит. При изменении полярности - гаснет. Аналогично проверяется и эмиттерный переход полупроводника, только «плюс» идет не на коллектор, а на эмиттер. При проверке диода нужно выпаивать один из его выводов. Если лампочка горит - все в порядке, если не горит, или же горит независимо от полярности присоединения батарейки - прибор неисправен.

г

Изоляция электрических машин в эксплуатации подвергается постепенному износу - старению под воздействием нагревания, механических нагрузок, электрического напряжения (в особенности у высоковольтных машин), действия масел, химических веществ, влаги, пыли и т. п. Внешними признаками старения являются потемнение цвета изоляционных материалов, хрупкость их (действие нагрева), наличие трещин в лаковой пленке (нагрев и механические усилия), разрушения лаковой пленки (действие химических веществ масла, пыли), разбухание изоляционных гильз и пазовой изоляции (нагрев и электрическое напряжение).

Следует отметить, что внешний осмотр и измерение сопротивления изоляции (мегомметром) дают лишь некоторую ориентировку, а не точную картину состояния изоляции.

Для определения состояния изоляции машин высокого напряжения следует, кроме указанных выше, применять специальные методы определения состояния изоляции (измерение диэлектрических потерь, снятие кривых абсорбции и ряд других ).

Уход за изоляцией заключается в периодической чистке (специальными моющими жидкостями под небольшим давлением ), продувке, а также в периодической пропитке соответствующими лаками (профилактическая пропитка).

Одной из основных характеристик изоляционных материалов является их пробивное напряжение. Величина минимального напряжения, при котором происходит пробой изоляционного материала толщиной 1 мм, определяет его электрическую прочность.

Если изоляция состоит из слоев различных материалов, то напряжение, действующее на такую изоляцию, распределяется по слоям неравномерно, и может оказаться, что один из слоев, на который приходится наибольшее напряжение (на единицу толщины), будет пробит.

После этого все напряжение ляжет на остальные слои, и они также будут пробиты.

В частности, из-за неплотного прилегания слоев изоляции образуются воздушные прослойки, в которых под воздействием напряжения возможна ионизация (разложение) воздуха, приводящая к постепенной порче соседних слоев изоляции.

Воздушные прослойки резко ухудшают теплопроводность изоляции, что повышает перегрев обмоток и снижает срок службы изоляции, а также способствует проникновению влаги внутрь изоляции и порче ее.