Энергетические состояния квантовой системы. Населенности квантовых уровней

А.Г. Акманов, Б.Г. Шакиров

 

ОСновы квантовых и оптоэлектронных приборов

 

 

Рекомендовано УМО по образованию в области телекоммуникации в качестве учебного пособия

 

Уфа 2003

УДК 621.378.1+621.383.4

ББК 32.86

А40

 

Рецензенты

 

кафедра «Телекоммуникационные системы» УГАТУ

Маликов Р.Ф., доктор физико-математических наук,

профессор БГПУ

 

Протокол №24 от 24.06.2003г. пленума Совета УМО по образованию в

области телекоммуникации.

 

Акманов А.Г., Шакиров Б.Г.

 

А40 Основы квантовых и оптоэлектронных приборов. Учебное пособие.

Уфа: РИО БашГУ, 2003. - 129 с.

ISBN

 

Данная работа является учебным пособием по дисциплинам «Оптоэлектронные и квантовые приборы и устройства», «Квантовая радиофизика» по специальностям «Физика и техника оптической связи» и «Радиофизика и электроника».

Рассмотрены физические основы, принцип действия и характеристики твердотельных, газовых и полупроводниковых лазеров, вопросы управления их параметрами. Изложены физические основы и характеристики элементов оптоэлектронных приборов.

 

УДК 621.378.1 + 621.383.4

ББК 32.86

 

ISBN

ãАкманов А.Г., Шакиров Б.Г., 2003 г.

 

ã БашГУ, 2003 г.

 

ВВЕДЕНИЕ

Под квантовой электроникой как областью науки и техники понимается наука, изучающая теорию и метод генерации и усиления электромагнитных волн путем индуцированного излучения в термодинамически неравновесных квантовых системах (атомы, молекулы, ионы), свойства получаемых таким образом генераторов и усилителей и их применения.

Основу квантовой электроники составляют физические положения, сформулированные еще в 1916 г. А. Эйнштейном, который теоретически предсказал существование индуцированного излучения и указал на его особое свойство - когерентность вынуждающему излучению.

Возможность создания квантовых приборов была обоснована в начале 50-х годов. В 1954 г. в Физическом Институте АН СССР (Прохоров А. М., Басов Н, Г.) и в Колумбийском Университете (Таунс Ч.) были разработаны молекулярные квантовые генераторы (или мазеры1) СВЧ диапазона. Следующий, естественный для развития квантовой электроники шаг был сделан в направлении создания квантовых приборов оп­тического диапазона. Теоретическое обоснование такой возможности (Таунс Ч., Шавлов А., 1958 г.), предложение открытого резонатора в качестве колебательной системы в оптическом диапазоне (Прохоров А.М, 1958 г.) стимулировали экспериментальные исследования. В 1960 г. был создан лазер1 на рубине (Мейман Т., США), в 1961 г. - лазер на смеси гелия с неоном (Джаван А., США), а в 1962 г. - первые полупроводниковые лазеры (США, СССР).

Оптоэлектроника (ОЭ) – это область науки и техники, связанная с разработкой и применением электронно-оптических устройств и систем для передачи, приема, обработки, хранения и отображения информации.

В зависимости от характера оптического сигнала различают когерентную и некогерентную оптоэлектронику. Когерентная ОЭ базируется на использовании источников лазерного излучения. К некогерентной ОЭ относят дискретные и матричные некогерентные излучатели и построенные на их основе индикаторные устройства, а также фотоприёмные устройства, оптопары, оптронные интегральные микросхемы и др.

 

 

Лазерное излучение обладает следующими свойствами:

1. Временная и пространственная когерентность. Время когерентности может составить до 10-3 с, что соответствует длине когерентности порядка 105 м (lког=c ког), т.е. на семь порядков выше, чем для обычных источников света.

2. Строгая монохроматичность ( <10-11 м).

3. Большая плотность потока энергии.

4. Очень малое угловое расхождение в среде.

КПД лазеров колеблется в широких пределах – от 0,01% (для гелий-неонового лазера) до 75% (для полупроводникового лазера), хотя для большинства лазеров КПД составляет 0,1-1 %.

Необычные свойства лазерного излучения находят в настоящее время широкое применение. Применение лазеров для обработки, резания и микросварки твердых материалов оказывается экономически более выгодным. Лазеры применяются для скоростного и точного обнаружения дефектов в изделиях, для тончайших операций (например, луч СО2-лазера в качестве бескровного хирургического ножа), для исследования механизма химических реакций и влияния на их ход, для получения сверхчистых веществ. Одним из важных применений лазеров является получение и исследование высокотемпературной плазмы. Эта область их применения связана с развитием нового направления – лазерного управляемого термоядерного синтеза. Лазеры широко применяются в измерительной технике. Лазерные интерферометры используются для сверхточных дистанционных измерений линейных перемещений, коэффициентов преломления среды, давления, температуры.

Широкое распространение лазерные источники излучения получили в технике связи.

 

 

ФИЗИЧЕСКИЕ ОСНОВЫ ЛАЗЕРОВ

 

Усиление световой волны в лазерах основано на явлении индуцированного излучения фотона возбужденной частицей вещества (атомом, молеку­лой). Чтобы основную роль играло индуцированное излучение, необходимо перевести рабочее вещество (усили­вающую среду) из равновесного состояния в неравновесное, при котором создана инверсия населенностей энергетических уровней.

В качестве колебательной системы в лазерах используется так называемой открытый резонатор, представляющий собой систему из двух высокоотражающих зеркал. При помещении между ними рабочего вещества создается условие для многократного прохождения усиливаемого излучения через активную среду, и таким образом реализуется положительная обратная связь.

Процесс возбуждения активной среды с целью создания в ней инверсии населенностей называется накачкой, а физическая система, обеспечивающая этот процесс - системой накачки.

Таким образом, в структурной схеме любого типа лазера можно выделить три основных элемента: активную среду, систему накачки и открытый резонатор.

В соответствии с этим в I главе излагаются основы теории квантового усиления и генерации при взаимодействии светового излучения с веществом, методы накачки и теория открытого резонатора.

Оптическое излучение

 

Оптическим излучением или светом называют электромагнитные волны, длины волн которых заключены в интервале от единиц нанометров до сотен микрометров. Помимо воспринимаемого человеческом глазом видимого излучения (l=0,38-0,76 мкм), различают ультрафиолетовое (l=0,01-0,38 мкм) и инфракрасное (l=0,78-100 мкм) излучения.

Напомним некоторые положения и формулы волновой и квантовой оптики. Волновая оптика базируется на уравнениях классической электродинамики, основу которой составляют уравнения Максвелла:

[ E]=rot E=

[ H]=rot H= (1.1) где Е, D, Н, B– векторы напряженности и индукции соответственно электрического и магнитного полей (система (1.1) написана для случая отсутствия токов и зарядов в среде). В однородной изотропной среде Dи Bсвязаны с полями E и H соотношениями (в системе СИ):

D=ε0eE, B=μ0mH,(1.2) где e – относительная диэлектрическая, m - относительная магнитная проницаемости среды, e0 – электрическая, m0 – магнитная постоянные. Система (1.1) сводится к волновому уравнению для (или ): (1.3) Уравнение (1.3) имеет решение , (1.4) которое описывает плоскую волну, распространяющуюся в направлении, определяемым волновым вектором с фазовой скоростью:

(1.5)

где с= - скорость света в вакууме. Для немагнитной среды m=1, n= и для скорости волны получим: (1.5а)

Объемная плотность энергии, переносимой электромагнитной волной, дается формулой: r=(1/2)ε0eE2+(1/2)μ0mH2=ε0eE2. (1.6)

Спектральная объемная плотность энергии rn определяетсясоотношением: (1.7)

Модуль вектора Умова-Пойнтинга (1.8)

определяет плотность потока световой энергии, .

Под интенсивностью света понимается усредненный по времени поток энергии (1.9)

Процессы поглощения и испускания света могут быть объяснены только в рамках квантовой оптики, которая рассматривает оптическое излучение в виде потока элементарных частиц – фотонов, не имеющих массы покоя и электрического заряда, обладающих энергией Eф=hn, импульсом p=hk и движущихся со скоростью света.

Плотность потока фотонов F=I/(hn)=ru/(hn) (1.10)

где [hn]=Дж, [F]=1/(м2 с).

Энергетические состояния квантовой системы. Населенности квантовых уровней

Важнейшим свойством квантовых систем (ансамбль атомов, молекул) является то, что их внутренняя энергия может принимать только дискретные значения E1,E2,..Enу определяемые решениями соответствующих уравнений Шредингера. Совокупность возможных для данной квантовой системы энергетических уровней называется энергетическим спектром. На диаграмме энергетических уровней энергию выражают в Джоулях, обратных сантиметрах или электрон-вольтах. Состояние с наименьшей энергией, являющееся наиболее устойчивым, называют основным. Все другие состояния, которым соответствует большая энергия, называются возбужденными.

В общем случае можно представить, что несколько различных возбужденных состояний характеризуются одним и тем же значением внутренней энергии. В этом случае говорят, что состояния вырождены, а степень вырождения (или статистический вес уровня gi.) равна числу состояний.

Рассмотрим макросистему, состоящую из N0 тождественных слабовзаимодействующих микросистем (атомов), обладающих определенным спектром энергетических уровней. Такой макросистемой является ак­тивная среда лазера.

Число атомов в единице объема, находящихся на данном энергетическом уровне i, называется населенностью этого уровня Ni. Распределение населенностей по уровням в условиях термодинамического равновесия подчиняется статистике Больцмана:

(1.11)

где Т – абсолютная температура, k – постоянная Больцмана, gi – кратность вырождения уровня, , где Еi-энергия i–го квантового уровня. Из (1.11) следует, что , т.е. сумма населенностей всех энергетических уровней равна количеству частиц N0 в рассматриваемом ансамбле.

В соответствии с (1.11) в основном состоянии с энергией Е1 при термодинамическом равновесии находится наибольшее количество атомов, а населенности верхних уровней уменьшаются с ростом энергии уровня (рис.1.1). Отношение населенностей двух уровней в равновесном состоянии дается формулой: (1.12)

Для простых невырожденных уровней g1= g2=1 и формула (1.12) принимает вид: (1.12а)

Рис.1.1 Распределение населенностей энергетических уровней в условиях термодинамического равновесия.

 

Мгновенный, скачкообразный переход с уровня Еi на уровень Еj называется квантовым переходом. При Еi > Еj квантовая система отдает энергию, равную (Ei-Ej), а при Еi < Еj - поглощает ее. Квантовый переход с испусканием или поглощением фотона называется оптическим. Энергия испущенного (поглощенного) фотона определяется соотношением Бора:

hnij= Еi - Еj (1.13)

 

1.3 Элементарные процессы взаимодействия
оптического излучения с веществом

 

Рассмотрим более подробно квантовые переходы, которые могут происходить между двумя произвольно выбранными энергетическими уровнями, например 1 и 2 (рис.1.2), которым соответствует энергии E1 и E2­ и населенности N1 и N2.

N2
а) б) в)

N2
N2
E2
E2
E2

           
     
 
 
 

 

 


Рис. 1.2. Квантовые переходы в двухуровневой системе.

 

Возможны три типа оптических переходов: спонтанные,вынужденные с поглощениемивынужденные с излучением.

Введем для этих вероятностных процессов количественные характеристики, как это впервые было сделано А. Эйнштейном.

Спонтанные переходы

Если атом (или молекула) находится в состоянии 2 в момент времени t=0, то существует конечная вероятность того, что он перейдет в состояние 1, испустив при этом квант света (фотон) с энергией hn21=(E2-E1) (рис.1.2а). Этот процесс, происходящий без взаимодействия с полем излучения, называется спонтанным переходом, а соответствующее излучение – спонтанным излучением. Вероятность спонтанных переходов пропорциональна времени, т.е. (dw21)сп=A21dt, (1.14)

где А21коэффициент Эйнштейна для спонтанного излучения и определяет вероятность перехода в единицу времени, [A21]=1/c.

Предположим, что в момент времени t населенность уровня 2 составляет величину N2. Скорость перехода этих атомов на нижний уровень вследствие спонтанного излучения пропорциональна вероятности перехода А21 и населенности уровня, с которого происходит переход, т.е.

(dN2/dt)сп=-A21N2. (1.15)

Из квантовой механики следует, что спонтанные переходы происходят из данного состояния только в состояния, лежащие по энергии ниже, т.е. из состояния 1 в состояние 2 спонтанных переходов нет.

Вынужденные переходы

 

Рассмотрим взаимодействие группы идентичных атомов с полем излучения, плотность энергии которого распределена равномерно по частотам вблизи частоты перехода. При воздействии на атом электромагнитного излучения резонансной частоты (n=ν21=(E2-E1)/h) существует конечная вероятность того, что атом перейдет из состояния 1 на верхний уровень 2, поглощая при этом квант электромагнитного поля (фотон) с энергией hn (рис.1.2б).

Разность энергий (E2-E1) необходимая для того, чтобы атом совершал такой переход, берется из энергии падающей волны. В этом заключается процесс поглощения, который можно описать с помощью скоростного уравнения (dN1/dt)п=W12N1=rnB12N1, (1.16)

где N1 – населенность уровня 1, W12=rvB12 – вероятность поглощения в единицу времени, rv спектральная объемная плотность энергии падающего излучения, В12 – коэффициент Эйнштейна для поглощения.

Используется также другое выражение для вероятности W12 в виде:

W12=s12F, (1.17)

где F – плотность потока падающих фотонов, s12 – величина, называемая сечением поглощения, [s12]= м2.

Предположим теперь, что атом первоначально находится на верхнем уровне 2 и на вещество падает волна с частотой n=n21. Тогда существует конечная вероятность того, что эта волна инициирует переход атома с уровня 2 на уровень 1. При этом разность энергий (E2-E1) выделится в виде электромагнитной волны, которая добавится к энергии падающей волны. Это и есть явление вынужденного (индуцированного) излучения.

Процесс вынужденного излучения можно описать с помощью скоростного уравнения: (dN2/dt)вын=W21N2=rnB21N2, (1.18)

где N2 – населенность уровня 2, W21=rvB21 – вероятность вынужденного перехода в единицу времени, B21-коэффициент Эйнштейнадлявынужденного перехода. И в этом случае для вероятности перехода справедливо соотношение: W21=s21F, (1.19)

где s21 – сечение вынужденного излучения для перехода 2→1.

Между процессами спонтанного и вынужденного излучения имеется принципиальное отличие. Вероятности индуцированных переходов пропорциональны спектральной объемной плотности электромагнитного поля, а спонтанных от внешнего поля не зависят. В случае спонтанного излучения атом испускает электромагнитную волну, фаза которой не имеет определенной связи с фазой волны, излученной другим атомом. Более того, испущенная волна может иметь любое направление распространения.

В случае же вынужденного излучения, поскольку процесс инициируется падающей волной, излучение любого атома добавляется к этой волне в той же фазе. Падающая волна определяет также поляризацию и направление распространения испущенной волны. Таким образом, с ростом числа вынужденных переходов интенсивность волны возрастает, в то время как ее частота, фаза, поляризация и направление распространения остаются неизменными. Другими словами, в процессе вынужденных переходов из состояния E2 в состояние E1 происходит когерентное усиление электромагнитного излученияна частоте n21=(E2-E1)/h. Разумеется, при этом происходят и обратные переходы E1®E2 с поглощением электромагнитного излучения.

 

Спонтанное излучение

Интегрируя выражение (1.15) по времени с начальным условием N2(t=0)=N20 получим: N2(t)=N20exp(-A21t). (1.20)

Мощность спонтанного излучения находится перемножением энергии фотона 21 на количество спонтанных переходов в единицу времени:

Pсп=hν21 A21 N2 (t )V=Pсп0exp(-A 21t) (1.21)

где Pсп0=hn21 A21 N20 V, V – объем активной среды.

Введем понятие о среднем времени жизни атомов в возбужденном состоянии относительно спонтанных переходов. В рассматриваемой двухуровневой системе атомы, которые покидают возбужденное состояние 2 за время от t до t+Dt, очевидно, находились в этом состоянии на протяжении времени t. Число таких атомов равно N2A21Dt. Тогда их средняя продолжительность жизни в возбужденном состоянии определяется соотношением:

(1.22)

Представим формулу (1.22) в виде:

(1.21 а)

Величину tсп можно найти экспериментально, поскольку она фигурирует как параметр в законе затухания спонтанной люминесценции, определяемой формулой (1.21 а).