Методы генетики соматических клеток

С помощью этих методов изучают наследственность и изменчивость соматических клеток, что в значительной мере компенсирует невозможность применения к человеку метода гибридологического анализа.

Методы генетики соматических клеток, основанные на размножении этих клеток в искусственных условиях, позволяют не только анализировать генетические процессы в отдельных клетках организма, но благодаря полноценности наследственного материала, заключенного в них, использовать их для изучения генетических закономерностей целостного организма.

В связи с разработкой в 60-х гг. XX в. методов генетики соматических клеток человек оказался включенным в группу объектов экспериментальной генетики. Благодаря быстрому размножению на питательных средах соматические клетки могут быть получены в количествах, необходимых для анализа. Они успешно клонируются, давая генетически идентичное потомство. Разные клетки могут, сливаясь, образовывать гибридные клоны. Они легко подвергаются селекции на специальных питательных средах и долго сохраняются при глубоком замораживании. Все это позволяет использовать культуры соматических клеток, полученные из материала биопсий (периферическая кровь, кожа, опухолевая ткань, ткань эмбрионов, клетки из околоплодной жидкости), для генетических исследований человека, в которых используют следующие приемы: 1) простое культивирование, 2) клонирование, 3) селекцию, 4) гибридизацию.

 

Культивирование позволяет получить достаточное количество клеточного материала для цитогенетических, биохимических, иммунологических и других исследований.

 

Планирование—получение потомков одной клетки; дает возможность проводить в генетически идентичных клетках биохимический анализ наследственно обусловленных процессов.

Селекция соматических клеток с помощью искусственных сред используется для отбора мутантных клеток с определенными свойствами и других клеток с интересующими исследователя характеристиками.

Гибридизация соматических клеток основана на слиянии совместно культивируемых клеток разных типов, образующих гибридные клетки со свойствами обоих родительских видов. Для гибридизации могут использоваться клетки от разных людей, а также от человека и других животных (мыши, крысы, морской свинки, обезьяны, джунгарского хомячка, курицы).

Гибридные клетки, содержащие два полных генома, при делении обычно «теряют» хромосомы предпочтительно одного из видов. Например, в гибридных клетках «человек — мышь» постепенно утрачиваются все хромосомы человека, а в клетках «человек — крыса» — все, кроме одной, хромосомы крысы, с сохранением всех хромосом человека. Таким образом можно получать клетки с желаемым набором хромосом, что дает возможность изучать сцепление генов и их локализацию в определенных хромосомах.

 

Постепенная потеря хромосом человека из гибридных клеток параллельно с изучением ферментов дает возможность судить о локализации гена, контролирующего синтез данного фермента, в определенной хромосоме.

 

Благодаря методам генетики соматических клеток можно изучать механизмы первичного действия и взаимодействия генов, регуляцию генной активности. Они позволяют судить о генетической гетерогенности наследственных болезней, изучать их патогенез на биохимическом и клеточном уровнях. Развитие этих методов определило возможность точной диагностики наследственных болезней в пренатальном периоде.

 

Рестрикционный анализ, полимеразная цепная реакция, ДНК-зонды – см. лекцию № 4.

 

Фрагменты ДНК различной длины могут быть фракционированы методом электрофореза. Этот метод является важнейшим методом исследования ДНК и широко используется в криминалистическом ДНК-анализе. Средой для электрофореза служат агарозные или полиакриламидные гели, формирующие сетчатую структуру с величиной ячеек, соизмеримой с величиной молекулы ДНК. Перед электрофорезом пробы ДНК вносят в специальные лунки геля, которым будут соответствовать его дорожки. После наложения электрического поля фрагменты ДНК (имеющие отрицательный заряд) начинают перемещаться к аноду (положительно заряженному электроду), испытывая сопротивление сетчатой среды геля. Чем короче фрагмент, тем меньшее сопротивление он испытывает и тем быстрее он движется (скорость миграции обратно пропорциональна логарифму длины фрагмента). В результате электрофореза в геле образуются полосы (рис. 1). Те полосы, которые располагаются ближе к аноду, соответствуют меньшим по длине фрагментам, а те, которые дальше, — большим. Для определения длины фрагментов ДНК на гель наносят специальный маркер, т.е. пробу, содержащую смесь фрагментов известной длины. Ориентируясь на расположение полос маркера и полосы фрагмента ДНК неизвестного размера, устанавливают его длину.

 

41. Нетрадиционное наследование признаков (цитоплазматическое наследование, геномный импринтинг). Примеры заболеваний человека с нетрадиционным наследованием.

Цитоплазматическое наследование.

Связано с передачей ДНК, находящейся в органоидах (митохондрии и хлоропласты).

У человека такое наследование наблюдается при митохондриальных заболеваниях. Митохондрии человека содержат одну кольцевую молекулу ДНК. Размер 16600 пар нуклеотидов. В этой ДНК содержатся следующие гены:

- 2 гена рибосомальной РНК

- 22 гена тРНК

- 13 генов, которые кодируют белки-ферменты

Однако, не все ферменты, связанные с синтезом АТФ кодируются митохондриальной ДНК.

Особенности:

1. Признак передается только по материнской линии. От матери всем детям.

2. Гетероплазия, т.е. мутантная ДНК встречается не во всех митохондриях. Измененные митохондрии распределяются случайным образом по цитоплазме клетки и по различным типам клеток.

3. Тяжесть клинических симптомов зависит от содержания мутагенной митохондриальной РНК, а также от энергетических потребностей клетки.

Самые склонные ткани к недостатку АТФ:

1. Нервная ткань

2. Скелетные мышцы

3. Миокард

Симптомы недостатка АТФ: повторные комы, задержка физического развития, ацитоз (т.е. накопление кислых продуктов и сдвиг pH в кислую сторону)

Симптомы поражения нервной системы: судороги, атоксия (т.е. нарушение точных движений), полинейропатия, атрофия зрительного нерва.

Генетический материал хлоропластов включает несколько десятков кольцевых двуспиральных правозакрученных молекул ДНК, которые являются копиями друг друга. ДНК хлоропластов (хлДНК) также отличается по нуклеотидному составу от яДНК и не связана с гистонами, однако имеются и черты сходства с яДНК (некоторые гены тРНК имеют интрон-экзонную структуру, а именно гены аланиновой и изолейциновой тРНК). Длина одной молекулы хлДНК – несколько сотен тпн (примерно в 10 раз больше, чем одиночная молекула мтДНК). хлДНК кодирует: часть транспортных и рРНК (рибосомы пластид отличаются от рибосом цитоплазмы), некоторые белки ( 3 субъединицы АТФазы, белки наружной и внутренней мембран, большую субъединицу рибулезодифосфаткарбоксилазы – всего около 30 белков, хотя теоретически может кодировать 100–150 белков). Большая часть белков хлоропласта закодирована в яДНК.

Геномный импринтинг.

В геноме человека содержится информация как минимум 2-х разновидностей.

А) информация генетическая

Инструкция по синтезу белка

Б) информация эпигенетическая.

Это инструкция, в каких клетках в каком возрасте, в каком кол-ве и какие белки нужно синтезировать, т.е. инструкция по управлению генетической информацией.

В) у человека гомология с шимпанзе 95-97%

Наша ДНК практически такая же, как и у шимпанзе.

Геномный импринтинг – механизм регуляции экспрессии гомологичных генов во время развития организма в зависимости от происхождения гена или хромосомы, т.е. гены от отца или матери могут работать по разному.

Явление было обнаружено при изучении развития зародыша млекопитающих. Было произведено 2 серии опытов:

1. изучали гиногенетические зиготы, т.е. весь наследственный материал поступал от матери.

В яйцеклетку вводят ядро другой яйцеклетки.

Зародыш рано погибает, при этом само тело зародыша развивается практически нормально, а внезародышевые органы развиваются плохо.

2. изучают андрогенетические зиготы, т.е. наследственный материал полностью отцовского происхождения.

Из яйцеклетки удаляют ядро и водят 2 ядра сперматозоида. Зародыш рано погибает. Внезародышевые органы развиваются нормально, а развитие самого зародыша нарушено.

Примеры геномного импринтинга:

1. синдром Прадера-Вилли

Низкий рост, гипотомия (слабый тонус мшц), умственная отсталость, вес при рождении 2600-2800, развивается гиперфагия à ожирение.

Врожденные пороки развития. Срок жизни 25-30 лет. Частота 1 на 10000 новорожденных.

2. синдром Ангельмана

Умственная отсталость, микроцефалия, уплощенный затылок, большая нижняя челюсть, приоткрытый рот, редко растущие зубы, судорожная готовность. Приступы неконтролируемого смеха и хлопания в ладоши. Частота 1 на 20000 новорожденных.

У этих двух синдромов была обнаружена одинаковая мутация, т.е. делеция в длинном плече 15-ой хромосомы. В этом участке обнаружено 6 генов.

В отцовской хромосоме в норме экспрессируются 4 гена, а в материнской в норме-2 гена.

Если делеция в отцовской хромосоме – синдром Прадера-Вилли, если делеция в материнской хромосоме – синдром Ангельмана.

У человека обнаружено около 100 генов, подверженных геномному импринтингу.

Один из самых ярких примеров цитоплазматического наследования – явление цитоплазматической мужской стерильности (ЦМС), обнаруженное у многих растений – кукурузы, лука, свеклы, льна и др

42. Пренатальная диагностика наследственных заболеваний человека. Медико-генетическое консультирование и его медицинское значение.

см. лекцию № 8

43. Моногенные, хромосомные и мультифакториальные болезни человека, механизмы их возникновения и проявления. Общие подходы к диагностике, лечению и профилактике наследственных заболеваний.

Генные болезни – это большая группа заболеваний, возникающих в результате повреждения ДНК на уровне гена. Термин употребляется в отношении моногенных заболеваний.

Причины генных патологий

Большинство генных патологий обусловлено мутациями в структурных генах, осуществляющих свою функцию через синтез полипептидов — белков. Любая мутация гена ведет к изменению структуры или количества белка.

Начало любой генной болезни связано с первичным эффектом мутантного аллеля.

 

Основная схема генных болезней включает ряд звеньев:

мутантный аллель → измененный первичный продукт → цепь биохимических процессов в клетке → органы → организм

В результате мутации гена на молекулярном уровне возможны следующие варианты:

· синтез аномального белка;

· выработка избыточного количества генного продукта;

· отсутствие выработки первичного продукта;

· выработка уменьшенного количества нормального первичного продукта.

 

Не заканчиваясь на молекулярном уровне в первичных звеньях, патогенез генных болезней продолжается на клеточном уровне. При различных болезнях точкой приложения действия мутантного гена могут быть как отдельные структуры клетки — лизосомы, мембраны, митохондрии, пероксисомы, так и органы человека.

 

Клинические проявления генных болезней, тяжесть и скорость их развития зависят от особенностей генотипа организма, возраста больного, условий внешней среды (питание, охлаждение, стрессы, переутомление) и других факторов.

Особенностью генных (как и вообще всех наследственных) болезней является их гетерогенность. Это означает, что одно и то же фенотипическое проявление болезни может быть обусловлено мутациями в разных генах или разными мутациями внутри одного гена. Впервые гетерогенность наследственных болезней была выявлена С. Н. Давиденковым в

1934 г.

Общая частота генных болезней в популяции составляет 1-2%. Условно частоту генных болезней считают высокой, если она встречается с частотой 1 случай на 10000 новорожденных, средней – 1 на 10000 - 40000 и далее – низкой.

Моногенные формы генных заболеваний наследуются в соответствии с законами Г. Менделя. По типу наследования они делятся на аутосомно-доминантные, аутосомно-рецессивные и сцепленные с Х- или Y-хромосомами.

 

Классификация

К генным болезням у человека относятся многочисленные болезни обмена веществ. Они могут быть связаны с нарушением обмена углеводов, липидов, стероидов, пуринов и пиримидинов, билирубина, металлов и др. Пока еще нет единой классификации наследственных болезней обмена веществ.

Болезни аминокислотного обмена

Самая многочисленная группа наследственных болезней обмена веществ. Почти все они наследуются по аутосомно-рецессивному типу. Причина заболеваний — недостаточность того или иного фермента, ответственного за синтез аминокислот. К ним относится:

· фенилкетонурия - нарушение превращения фенилаланина в тирозин из-за резкого снижения активности фенилаланингидроксилазы;

· алкаптонурия - нарушение обмена тирозина вследствие пониженной активности фермента гомогентизиназы и накоплением в тканях организма гомотентизиновой кислоты;

· глазно-кожный альбинизм - обусловлен отсутствием синтеза фермента тирозиназы.

Нарушения обмена углеводов

· галактоземия - отсутствие фермента галактозо-1-фосфат-уридилтрансферазы и накопление в крови галактозы;

· гликогеновая болезнь - нарушение синтеза и распада гликогена.

Болезни, связанные с нарушением липидного обмена

· болезнь Ниманна-Пика - снижение активности фермента сфингомиелиназы, дегенерация нервных клеток и нарушение деятельности нервной системы;

· болезнь Гоше - накопление цереброзидов в клетках нервной и ретикуло-эндотелиальной системы, обусловленное дефицитом фермента глюкоцереброзидазы.

Наследственные болезни пуринового и пиримидинового обмена

· подагра;

· Синдром Леша-Нихена.

Болезни нарушения обмена соединительной ткани

· синдром Марфана («паучьи пальцы», арахнодактилия) - поражение соединительной ткани вследствие мутации в гене, ответственном за синтез фибриллина;

· мукополисахаридозы - группа заболеваний соединительной ткани, связанных с нарушеним обмена кислых гликозаминогликанов.

· Фибродисплазия - заболевание соединительной ткани,связанное с ее прогрессирующим окостенением в результате мутации в гене ACVR1

Наследственные нарушения циркулирующих белков

· гемоглобинопатии - наследственные нарушения синтеза гемоглобина. Выделяют количественные (структурные) и качественные их формы. Первые характеризуются изменением первичной структуры белков гемоглобина, что может приводить к нарушению его стабильности и функции (серповидноклеточная анемия). При качественных формах структура гемоглобина остается нормальной, снижена лишь скорость синтеза глобиновых цепей (талассемия).

Наследственные болезни обмена металлов

· болезнь Коновалова-Вильсона и др.

Синдромы нарушения всасывания в пищеварительном тракте

· муковисцидоз;

· непереносимость лактозы и др.

 

К хромосомным относятся болезни, обусловленные геномными мутациями или структурными изменениями отдельных хромосом. Хромосомные болезни возникают в результате мутаций в половых клетках одного из родителей. Из поколения в поколение передаются не более 3—5 % из них. Хромосомными нарушениями обусловлены примерно 50 % спонтанных абортов и 7 % всех мёртворождений.

Хромосомные болезни появляются вследствие повреждений генома, возникающих при созревании гамет, в процессе оплодотворения или на ранних стадиях дробления зиготы. Все хромосомные болезни могут быть разделены на 3 большие группы:

1) связанные с нарушением плоидности;

2) обусловленные нарушением числа хромосом;

3) связанные с изменением структуры хромосом.

Аномалии хромосом, связанные с нарушением плоидности, представлены триплоидией и тетраплоидией, которые встречаются преимущественно в материале спонтанных абортусов. Отмечены лишь единичные случаи рождения детей-триплоидов с тяжелыми МВПР, несовместимыми с нормальной жизнедеятельностью. Триплоидия может возникать как вследствие дигении (оплодотворение диплоидной яйцеклетки гаплоидным сперматозоидом), так и вследствие диандрии (обратный вариант) и диспермии (оплодотворение гаплоидной яйцеклетки двумя сперматозоидами).

 

Хромосомные болезни, связанные с нарушением числа отдельных хромосом в наборе, представлены либо целоймоносомией (одной из двух гомологичных хромосом в норме) либо целой трисомией (тремя гомологами). Целая моносомия у живорожденных встречаются только по хромосоме X (синдром Шерешевского-Тернера), поскольку большинство моносомий по остальным хромосомам набора (Y хромосоме и аутосомам) погибают на очень ранних этапах внутриутробного развития и достаточно редко встречаются даже в материале спонтанно абортированных эмбрионов и плодов. Следует, однако, отметить, что и моносомия X с достаточно высокой частотой (около 20%) выявляется у спонтанных абортусов, что свидетельствует о ее высокой пренатальной летальности, составляющей свыше 99%. Причина гибели зародышей с моносомией X в одном слу­чае и живорождения девочек с синдромом Шерешевского-Тернера в другом, неизвестна. Существуют ряд гипотез, объясняющих этот факт, одна из которых связывает повышенную гибель Х-моносомных зародышей с более высокой вероятностью проявления рецессивных летальных генов на единственной Х-хромосоме. Целые трисомии у живорожденных встречаются по X, 8, 9,13,14,18,21 и 22 хромосомам. Наибольшая частота хромосомных нарушений -до 70% отмечается у ранних абортусов. Трисомии по 1,5,6,11 и 19 хромосомам встречаются редко даже в абортивном материале, что свидетельствует о большой морфогенетической значимости этих хромосом. Более часто целые моно- и трисомии по ряду хромосом набора встречаются в мозаичном состоянии как у спонтанных абортусов, так и у детей с МВПР.

 

Хромосомные болезни, связанные с нарушением структуры хромосом, представляют большую группу синдромов частичных моно- или трисомии. Как правило, они возникают в результате структурных перестроек хромосом, имеющихся в половых клетках родителей, которые вследствие нарушения процессов рекомбинации в мейозе приводят к утрате или избытку фрагментов хромосом, вовлеченных в перестройку. Частичные моно- или трисомии известны практически по всем хромосомам, но лишь некоторые из них формируют четко диагностируемые клинические синдромы. Фенотипические проявления этих синдромов более полиморфны, чем синдромов целых моно- и трисомии. Отчасти это связано с тем, что размеры фрагментов хромосом и, следовательно, их генный состав, могут варьировать в каждом отдельном случае, а также тем, что при наличии хро­мосомной транслокации у одного из родителей частичная трисомия по одной хромосоме у ребенка может сочетаться с частичной моносомией по другой.

Болезни, обусловленные нарушением числа аутосом (неполовых) хромосом

· синдром Дауна — трисомия по 21 хромосоме, к признакам относятся: слабоумие, задержка роста, характерная внешность, изменения дерматоглифики;

· синдром Патау — трисомия по 13 хромосоме, характеризуется множественными пороками развития, идиотией, часто — полидактилия, нарушения строения половых органов, глухота; практически все больные не доживают до одного года;

· синдром Эдвардса — трисомия по 18 хромосоме, нижняя челюсть и ротовое отверстие маленькие, глазные щели узкие и короткие, ушные раковины деформированы; 60% детей умирают в возрасте до 3-х месяцев, до года доживают лишь 10%, основной причиной служит остановка дыхания и нарушение работы сердца.

Болезни, связанные с нарушением числа половых хромосом

· Синдром Шерешевского — Тёрнера — отсутствие одной Х-хромосомы у женщин (45 ХО) вследствие нарушения расхождения половых хромосом; к признакам относится низкорослость, половой инфантилизм и бесплодие, различные соматические нарушения (микрогнатия, короткая шея и др.);

· полисомия по Х-хромосоме — включает трисомию (кариотии 47, XXX), тетрасомию (48, ХХХХ), пентасомию (49, ХХХХХ), отмечается незначительное снижение интеллекта, повышенная вероятность развития психозов и шизофрении с неблагоприятным типом течения;

· полисомия по Y-хромосоме — как и полисомия по X-хромосоме, включает трисомию (кариотии 47, XYY), тетрасомию (48, ХYYY), пентасомию (49, ХYYYY), клинические проявления также схожи с полисомией X-хромосомы;

· Синдром Клайнфельтера — полисомия по X- и Y-хромосомам у мальчиков (47, XXY; 48, XXYY и др.), признаки: евнухоидный тип сложения, гинекомастия, слабый рост волос на лице, в подмышечных впадинах и на лобке, половой инфантилизм, бесплодие; умственное развитие отстает, однако иногда интеллект нормальный.

Болезни, причиной которых является полиплоидия

· триплоидии, тетраплоидии и т. д.; причина — нарушение процесса мейоза вследствие мутации, в результате чего дочерняя половая клетка получает вместо гаплоидного (23) диплоидный (46) набор хромосом, то есть 69 хромосом (у мужчин кариотип 69, XYY, у женщин — 69, XXX); почти всегда летальны до рождения.

Нарушения структуры хромосом

· Транслокации — обменные перестройки между негомологичными хромосомами.

· Делеции — потери участка хромосомы. Например, синдром «кошачьего крика» связан с делецией короткого плеча 5-ой хромосомы. Признаком его служит необычный плач детей, напоминающий мяуканье или крик кошки. Это связано с патологией гортани или голосовых связок. Наиболее типичным, помимо «кошачьего крика», является умственное и физическое недоразвитие, микроцефалия (аномально уменьшенная голова).

· Инверсии — повороты участка хромосомы на 180 градусов.

· Дупликации — удвоения участка хромосомы.

· Изохромосомия — хромосомы с повторяющимся генетическим материалом в обоих плечах.

· Возникновение кольцевых хромосом — соединение двух концевых делеций в обоих плечах хромосомы.

В настоящее время у человека известно более 700 заболеваний, вызванных изменением числа или структуры хромосом. Около 25 % приходится на аутосомные трисомии, 46 % — на патологию половых хромосом. Структурные перестройки составляют 10,4 %. Среди хромосомных перестроек наиболее часто встречаются транслокации и делеции.

Полигенные болезни (ранее - заболевания с наследственной предрасположенностью) обусловлены как наследственными факторами, так и, в значительной степени, факторами внешней среды. Кроме того, они связаны с действием многих генов, поэтому их называют также мультифакториальными.

Полигенные заболевания тесно связаны с врождёнными дефектами метаболизма, часть из которых может проявляться в виде метаболических заболеваний.

Эта группа болезней в настоящее время составляет 92% от общего числа наследственных патологий человека. С возрастом частота заболеваний возрастает. В детском возрасте процент больных составляет не менее 10 %, а в пожилом - 25-30 %.

Распространение мультифакториальных болезней в разных популяциях человека может значительно варьировать, что связано с различием генетических и средовых факторов. В результате генетических процессов, происходящих в человеческих популяциях (отбор, мутации, миграции, дрейф генов), частота генов, определяющих наследственную предрасположенность, может возрастать или уменьшаться вплоть до полной их элиминации.

Клиническая картина и тяжесть течения мультифакториальных болезней человека в зависимости от пола и возраста очень различны. Вместе с тем, при всем их разнообразии, выделяют следующие общие особенности:

· Высокая частота заболеваний в популяции. Так, шизофренией болеют около 1% населения, сахарным диабетом — 5%, аллергическими заболеваниями — более 10%, гипертонией — около 30%.

· Клинический полиморфизм заболеваний варьирует от скрытых субклинических форм до ярко выраженных проявлений.

· Особенности наследования заболеваний не соответствуют менделевским закономерностям.

· Степень проявления болезни зависит от пола и возраста больного, интенсивности работы его эндокринной системы, неблагоприятных факторов внешней и внутренней среды, например, нерационального питания и др.

Генетический прогноз при мультифакториальных заболеваниях зависит от следующих факторов:

· чем ниже частота болезни в популяции, тем выше риск для родственников пробанда;

· чем сильнее степень выраженности болезни у пробанда, тем больше риск развития болезни у его родственников;

· риск для родственников пробанда зависит от степени родства с пораженным членом семьи;

· риск для родственников будет выше, если пробанд относится к менее поражаемому полу.

Полигенная природа болезней с наследственной предрасположенностью подтверждается с помощью генеалогического, близнецового и популяционно-статистического методов. Достаточно объективен и чувствителен близнецовый метод. С помощью близнецового метода показана наследственная предрасположенность к некоторым инфекционным заболеваниям (туберкулез, полиомиелит) и многим распространенным болезням (ишемическая болезнь сердца, ревматоидный артрит, сахарный диабет, язвенная болезнь, шизофрения и др.).

Трудности диагностики обусловлены прежде всего тем, что нозологические формы наследственных болезней очень многообразны (около 2000) и каждая из них характеризуется большим разнообразием клинической картины. Так, в группе нервных болезней известно более 200 наследственных форм, а в дерматологии их более 250. Некоторые формы встречаются крайне редко, и врач в своей практике может не встретиться с ними. Поэтому он должен знать основные принципы, которые помогут ему заподозрить нечасто встречающиеся наследственные заболевания, а после дополнительных консультаций и обследований поставить точный диагноз.

Диагностика наследственных болезней основывается на данных клинического, параклинического и специального генетического обследования.

При общем клиническом обследовании любого больного постановка диагноза должна завершиться одним из трех заключений:

· четко поставлен диагноз ненаследственного заболевания;

· четко поставлен диагноз наследственного заболевания;

· имеется подозрение, что основная или сопутствующая болезнь является наследственной.

Первые два заключения составляют подавляющую часть при обследовании больных. Третье заключение, как правило, требует применения специальных дополнительных методов обследования, которые определяются врачом-генетиком.

Полного клинического обследования, включая параклиническое, обычно достаточно для диагностики такого наследственного заболевания, как ахондроплаэия.

В тех случаях, когда диагноз больному не поставлен и необходимо уточнить его, особенно при подозрении на наследственную патологию, используют следующие специальные методы:

 

Подробное клинико-генеалогическое обследование проводится во всех случаях, когда при первичном клиническом осмотре возникает подозрение на наследственное заболевание. Здесь следует подчеркнуть, что речь идет о подробном обследовании членов семьи. Это обследование заканчивается генетическим анализом его результатов.

 

Цитогенетическое исследование может проводиться у родителей, иногда у других родственников и плода. Хромосомный набор изучается при подозрении на хромосомную болезнь для уточнения диагноза. Большую роль цитогенетического анализа составляет пренатальная диагностика.

 

Биохимические методы широко применяются в тех случаях, когда имеется подозрение на наследственные болезни обмена веществ, на те формы наследственных болезней, при которых точно установлены дефект первичного генного продукта или патогенетическое звено развития заболевания.

 

Иммуногенетические методы применяют для обследования пациентов и их родственников при подозрении на иммунодефецитные заболевания, при подозрении на антигенную несовместимость матери и плода, при установлении истинного родительства в случаях медико-генетического консультирования или для определения наследственного предрасположения к болезням.

 

Цитологические методы применяются для диагностики пока еще небольшой группы наследственных болезней, хотя возможности их достаточно велики. Клетки от больных можно исследовать непосредственно или после культивирования цитохимическими, радиоавтографическими и другими методами.

 

Метод сцепления генов применяется в тех случаях, когда в родословной имеется случай заболевания и надо решить вопрос, унаследовал ли пациент мутантный ген. Это необходимо знать в случаях стертой картины заболевания или позднего его проявления.

 

Длительное время диагноз наследственной болезни оставался как приговор обреченности больному и его семье. Несмотря на успешную расшифровку формальной генетики многих наследственных заболеваний, лечение их оставалось лишь симптоматическим. Впервые

С. Н. Давиденков еще в 30-х годах указал на ошибочность точки зрения о неизлечимости наследственных болезней. Он исходит из признания роли факторов внешней среды в проявлении наследственной патологии. Однако отсутствие сведений о патогенетических механизмах развития заболеваний в тот период ограничивало возможности разработки методов, и все попытки, несмотря на правильные теоретические установки, оставались длительное время эмпирическими. В настоящее время благодаря успехам генетики в целом (всех ее разделов) и существенному прогрессу теоретической и клинической медицины можно утверждать, что уже многие наследственные болезни успешно лечатся. Общие подходы к лечению наследственных болезней остаются теми же, что и подходы к лечению болезней другого происхождения. Тут можно выделить три подхода: симптоматическое, патогеническое, этиологическое.

 

Симптоматическое лечение применяют при всех наследственных болезнях, даже и там, где имеются методы патогенической терапии. Для многих форм патологии симптоматическое лечение является единственным.

Лекарственная симптоматическая терапия - наиболее часто используемый прием, разнообразный в зависимости от форм наследственных болезней: применение анальгина при наследственных формах мигрени, специфических транквилизаторов при психических заболеваниях, пилокарпина при глаукоме, специальных мазей при кожных болезнях и т. д. Успехи этого раздела терапии связаны с прогрессом фармакологии, обеспечивающей все более широкий выбор лекарств. С другой стороны, расшифровка патогенеза каждой болезни позволяет понять причину возникновения симптомов, а на этой основе лекарственная коррекция симптомов становится более тонкой. В качестве примера можно привести симптоматическое лечение муковисцидоза. Когда было выяснено, что при муковисцидозе образуется очень густая слизь в протоках эндокринных желез бронхов, то для облегчения состояния таким больным стали назначать вещества, разжижающие слизь (муколитические вещества).

В общей форме виды хирургической помощи больным с наследственной патологией могут быть трех видов: удаление (опухоли и др.); коррекция (незаращение верхней губы, врожденные пороки сердца и др.); трансплантация (комбинированная иммунная недостаточность и др.).

В некоторых случаях хирургическая помощь выходит за рамки симптоматического лечения, приближаясь по своему характеру к патогенетическому.

 

Многие виды физических методов лечения (теплолечение, разные виды электротерапии и др.) применяются при наследственных заболеваниях нервной системы, наследственных болезнях обмена веществ, заболеваниях скелета. К симптоматическому лечению можно отнести и рентгенорадиологическое облучение при наследственно обусловленных опухолях до и после хирургического вмешательства.

 

 

Лечение многих болезней по принципу вмешательства в патогенез болезней всегда эффективнее симптоматического. Однако следует понимать, что ни один из существующих ныне методов не устраняет причину заболевания, так как не восстанавливает структуру поврежденных генов. Действие каждого из них продолжается сравнительно короткое время, поэтому лечение должно быть непрерывным. Кроме того, приходиться признать ограниченность возможностей современной медицины: еще многие наследственные болезни не поддаются эффективному купированию. Особые надежды в связи с этим возлагают на использование методов генной инженерии для введения нормальных, неизмененных генов в клетки больного человека. Таким путем можно будет добиться кардинального излечения данного больного, но, однако это дело будущего.

 

В настоящее время существуют следующие основные направления терапии наследственных болезней.

 

Полное или частичное устранение из пищи субстрата или предшественника субстрата блокированной метаболической реакции. Этот прием используется в случаях, когда избыточное накопление субстрата оказывает токсичное действие на организм. Иногда (особенно когда субстрат не является жизненнонеобходимым и может синтезироваться в достаточном количестве обходными путями) такая диетотерапия оказывает очень хороший эффект. Типичный пример - галактоземия. Несколько сложнее дело обстоит при фенилкетонурии. Фенилаланин - незаменимая аминокислота, поэтому ее нельзя полностью исключать из пищи, а надо индивидуально подбирать для больного минимально необходимую дозу фенилаланина.

Восполнение кофакторов извне с целью повышения активности фермента. Чаще всего речь идет о витаминах. Дополнительное их введение больному с наследственной патологией дает положительный эффект, когда мутация нарушает способность фермента соединяться с активированной формой витамина при витаминчувствительных наследственных авитаминозах.

Нейтрализация и устранение экскреции токсических продуктов, накапливающихся в случае блокирования их дальнейшего метаболизма. К числу таких продуктов относится, например, медь при болезни Вильсона-Коновалова. Для нейтрализации меди больному вводят пеницилламин.

Искусственное введение в организм больного продукта блокированной у него реакции. Например, прием цитидиловой кислоты при оротоацидурии (заболевание, при котором страдает синтез пиримидинов) устраняет явления мегалобластической анемии.

Воздействие на "испорченные" молекулы. Этот метод применяется для лечения серповидно-клеточной анемии и направлен на уменьшение вероятности образования кристаллов гемоглобина 3. Ацетилсалициловая кислота усиливает ацетилирование HbS и таким путем снижает его гидрофобность, обусловливающую агрегацию этого белка.

Введение отсутствующего гормона или фермента. Первоначально этот метод был разработан и до сих пор успешно применяется для лечения сахарного диабета введением в организм больного инсулина. Позднее для подобных целей стали применять другие гормоны. Использование заместительной ферментотерапии, однако, несмотря на всю ее привлекательность, наталкивается на ряд трудностей: 1) далеко не во всех случаях имеется способ доставить фермент в нужные клетки и одновременно защитить его от деградации; 2) если синтез собственного фермента полностью подавлен, экзогенный фермент при длительном ведении инактивируется иммунной системой больного; 3) получение и очистка достаточного количества ферментов зачастую само по себе является сложной задачей.

Блокирование патологической активности ферментов с помощью специфических ингибиторов или конкурентное торможение аналогами субстратов данного фермента. Этот метод лечения применяется при избыточной активации систем свертывания крови, фибринолиза, а также при освобождении из разрушенных клеток лизосомальных ферментов.

 

Сопоставление молекулярных механизмов, поражаемых при наследственных заболеваниях, с используемыми для их лечения терапевтическими методами показывает , что еще далеко не все основные симптомы генетически обусловленных болезней человека в настоящее время могут быть устранены. Можно надеяться, что дальнейшее изучение молекулярных процессов, лежащих в основе наследственных заболеваний, в будущем приведет к значительному расширению арсенала методов лечения.

 

Несмотря на успехи симптоматического и патогенетического лечения наследственных болезней, вопрос о возможности их этиологического лечения не снимается. И чем больше будет прогресс теоретической биологии, тем чаще будет подниматься вопрос о радикальном, т. е. этиологическом, лечении наследственных болезней.

 

Этиологическое лечение любых наследственных болезней является наиболее оптимальным, поскольку оно устраняет первопричину заболевания и полностью излечивает его. Однако устранение причины наследственного заболевания означает такое серьезное "маневрирование" с генетической информацией в живом организме человека, как "включение" нормального гена (или подсадку его), "выключение" мутантного гена, обратная мутация патологического аллеля. Эти задачи достаточно трудны даже для манипулирования с прокариотами. К тому же, чтобы провести этиологическое лечение какого-либо наследственного заболевания, надо изменить структуру ДНК не в одной клетке, а во всех функционирующих клетках (и только функционирующих!). Прежде всего, для этого нужно знать, какое изменение в ДНК произошло при мутации, т.е. наследственная болезнь должна быть записана в химических формулах. Сложности этой задачи очевидны, хотя методы для их решения уже имеются в настоящее время.

 

Принципиальная схема для этиологического лечения наследственных заболеваний как бы составлена. Например, при наследственных болезнях, сопровождающихся отсутствием активности фермента (альбинизм, фенилкетонурия), необходимо синтезировать данный ген и ввести его в клетки функционирующего органа. Выбор способов синтеза гена и его доставки в соответствующие клетки широкий, и они будут пополняться с прогрессом медицины и биологии. Вместе с тем необходимо отметить важность соблюдения большой осторожности при применении методов (именно при применении, а не при разработке? ) генетической инженерии для лечения наследственных болезней, даже если будут сделаны решительные прорывы в синтезе соответствующих генов и способах их доставки в клетки-мишени. Генетика человека еще не располагает достаточными сведениями обо всех особенностях функционирования генетического аппарата человека. Пока еще неизвестно, как он будет работать после введения дополнительной генетической информации. Есть еще и другие нерешенные вопросы, которые не позволяют предполагать" быстрое применение методов этиологического лечения наследственных болезней.

 

Профилактика наследственной патологии в целом, несомненно, является важнейшим разделом современной медицины и организации здравоохранения. Речь при этом идет не просто о предотвращении, как правило, тяжелого заболевания у конкретного индивида, но и во всех его последующих поколениях. Именно из-за этой особенности наследственной патологии, сохраняющейся из поколения в поколение, в прошлом уже не раз предлагались методы профилактики, имеющие в своей основе евгенические подходы в одних случаях более гуманные, в других - менее. Только прогресс медицинской генетики принципиально изменил подходы к профилактике наследственной патологии; пройден путь от предложений стерилизации супругов или категорических рекомендаций воздержания от деторождения до пренатальной диагностики, профилактического лечения (лечение здоровых носителей патологических генов, предупреждающее развитие болезни) и индивидуально адаптивной среды для носителей патологических генов

44. Регенерация как процесс поддержания морфофизиологической целостности биологических систем на уровне организма. Физиологическая регенерация, ее значение. Проявление регенерации на субклеточном и клеточном уровнях. Фазы физиологической регенерации, механизмы ее регуляции.

см. лекцию № 12

Фазы ФР и механизмы регуляции:

1. Разрушительная àВыделение продуктов распада клеток.

2. Восстановительная à Стимулируется пролиферация камбиальных клеток, а также активация внутриклеточных процессов в оставшихся клетках.

45. Репаративная регенерация, ее значение. Способы репаративной регенерации. Типичная и атипичная регенерация. Регуляция регенерации.

см. лекцию № 12

Регуляция регенерации:

Нервная регуляция регенерации обусловлена влиянием нейротрофического фактора (НТФ) на регенерирующие ткани. НТФ – это биологически активные вещества, которые активируют митозы и дифференцировку клеток. Они вырабатываются в поврежденной нервной ткани и в поврежденных клетках любой ткани, но с разной интенсивностью.

Гуморальная регуляция – влияние НТФ на расстоянии от места их выработки. Если 1 животному ввести сыворотку от животного с ампутированной печенью, то у этого животного начинают активироваться в печени митозы. Если наоборот животному с ампутированной печенью ввести сыворотку здорового, митоз в печени не происходит.