История развития компьютеров

Общее, что есть в строении ЭВМ относят к понятию архитектуры. Важно отметить, что целью такой общности в конечном счете служит вполне понятное стремление: все машины одного семейства, независимо от их конкретного устройства и фирмы-производителя, должны быть способны выполнять одну и ту же программу (на практике из-за постоянного роста вычислительной мощности техники чаще используется менее жесткий принцип совместимости снизу вверх: все программы данной модели выполнимы на более старших). Отсюда неизбежно следует вывод, что с точки зрения архитектуры важны не все сведения о построении ЭВМ, а только те, которые могут как-то использоваться при программировании и “пользовательской” работе с ЭВМ.

Общие принципы построения ЭВМ, которые относятся к архитектуре:

· структура памяти ЭВМ;

· способы доступа к памяти и внешним устройствам;

· возможность изменения конфигурации компьютера;

· система команд;

· форматы данных;

· организация интерфейса.

Архитектура – это наиболее общие принципы построения ЭВМ, реализующие программное управление работой и взаимодействием основных ее функциональных узлов.

Первое поколение ЭВМ 1948 – 1958. Компонентная база компьютеров первого поколения- это электронные лампы. Они предназначались для решения научно-технических задач. Такими машинами обладали военные ведомства и государственные институты. Их стоимость была на столько велика, что даже крупные корпорации не могли приобрести их. Эти машины были огромных размеров и весили порядка 5 – 30 тонн, занимали площадь в несколько сотен квадратных метров. Так что зачастую для них нужны были отдельные помещения, а иногда и целые здания. Потребительская мощность таких машин измерялась сотнями киловатт энергии. К примеру машина ЭНИАК потребляла 150 кВт. Некоторые из них оперировали десятичными числами, такие как Марк-1, а не двоичными как существующие машины.

Вычислительная мощность составляла всего несколько тысяч операций в секунду. К примеру на такие операции как сложение, вычитание требовалось несколько секунд. На деления и умножение уходило до нескольких десятков секунд. А на вычисление логарифма или тригонометрической функции понадобилось больше минуты.

Элементной базой компьютеров этого поколения были: электромеханические реле, которые быстро ломались и создавали сильный шум как в производственном цехе, электронно-вакуумные лампы срок службы которых не превышал несколько месяцев. Их в машине было десятки тысяч.

ЭВМ первого поколения были полностью программируемые машины. Что их и отличало от арифмометров и калькуляторов. Но программировать на таких компьютерах было довольно сложно. Т.к. языков высокого и низкого уровня (ассемблер) уровня не было. Все инструкции компьютеру давались в машинном коде. Чтобы работать на таком компьютере нужно было быть не только профессиональным программистом, но и опытным инженером- электронщиком. Программировалась машина путем изменения положения переключателей и тумблеров на ее лицевых панелях, которые были почти на всем корпусе машины. Модификация программы была равносильна десяти минутной физкультурной зарядке.

Объем оперативной памяти составлял от 512 до 2048 байт. Память ЭВМ представляла из себя трубки, заполненные ртутью, кристаллы распространялись по трубке и сохраняли информацию. Под конец первого поколения и на начало второго стали выпускать память на магнитных сердечниках.

К компьютерам первого поколения относятся МЭСМ – Малая Электронная Счетная Машина, разработанная в институте электротехники АН УССР под руководством С.А. Лебедева 1950 г. К первому поколению относятся и такие машины как БЭСМ, Урал, М-2, Стрела.

Отечественный компьютер первого поколения БЭСМ-2. В нем было около 4 000 электронных ламп.

 

Второе поколение ЭВМ 1959 – 1967. Элементной базой второго поколения стали полупроводники. Транзисторы пришли на смену не надежным электронно-вакуумным лампам. Транзисторы значительно уменьшили компьютеры в размере и стоимости. Один транзистор способен заменить несколько десятков электронных ламп. При этом тепловыделение значительно уменьшилось и потребление электроэнергии тоже, а скорость работы стала выше. Если сравнивать машины первого и второго поколения, то на примере это выглядело так. Марк-1 это компьютер первого поколения, занимавший огромный зал. Его высота 2,5 м и длина 17 м и при этом он стоил 500 тыс. долларов. PDP-8 – ЭВМ второго поколения. Размером с холодильник, и при этом он стоил всего 20 тыс. долларов.

Слово транзистор происходит от двух английских слов transfer – переносить, resistor – сопротивление. Полупроводниковый прибор, который работает как переключатель. Современные транзисторы делаются на основе монокристального полупроводника.

Предшествующие ламповые компьютеры нуждались в дополнительном оборудовании. В подвалах вычислительных центров находились средства электропитания кондиционирования воздуха. С приходом второго поколения ЭВМ, потребность в них отпала.

Применялась также память на магнитных сердечниках. Представляя собой матрицу маленьких колец, которые поляризовались в двух направлениях. Что соответствовало одному биту информации. Технология отлично подходила в качестве оперативной памяти ЭВМ. Платы собирались почти вручную и были очень дорогие. А их объем составлял около 32 Кб.

В машине UNIVAC и LARC впервые начали использоваться магнитные барабаны. IBM для своих ЭВМ IBM 1401, IBM 1410 применили магнитные диски.

В чем отличие второго поколения от первого? В их элементной базе транзисторы заменили лампы, возросла производительность, уменьшилась потребление электроэнергии, уменьшилось выделение тепла. Нет необходимости в мощном кондиционировании помещений.

Среди советских компьютеров второго поколения стал Минск-22. Он мог выполнять до пяти тысяч элементарных операций в секунду. Его оперативная память была построена на ферритовых сердечниках, объемом порядка шести – восьми тысяч чисел. Последующая модель Минск-32 могла выполнять уже 250 тысяч операций в секунду. Объем оперативной памяти составлял 65 536 байт.

PDP-8 компьютер второго поколения. Производство корпорации DEC.

С появлением компьютеров второго поколения расширилась сфера их применения. От правительственных и военных учреждении они стали появляться в частных организациях, институтах. Главным образом за счет снижения стоимости машин и развитию программного обеспечения. Начали создавать специальное системное программное обеспечение. Появились системы пакетной обработки информации. Именно для компьютеров второго поколения начали разрабатывать операционные системы. Это значительно ускорило управление ЭВМ.

Большое внимание уделяли усовершенствованию программированию машин. В 50-х стали появляться первые языки программирования: B0, Fact, MathMatic и другие. Вслед за ними появились языки высокого уровня Fortran, Algol. В дальнейшем стали разрабатывать библиотеки, в которых хранились ранее созданные функции. Написанные один раз, вызывались они повторно.

 

Третье поколение ЭВМ 1968 – 1973. Интегральные схемы стали элементной базой компьютеров третьего поколения. Интегральная схем- это схема изготовленная на полупроводниковом кристалле и помещенная в корпус. Иногда интегральную схему называют – микросхемой или чипом. Chip в переводе с английского – щепка. Это название он получил из-за своих крошечных размеров. Первые микросхемы появились в 1958 году. Два инженера почти одновременно изобрели их не зная друг о друге. Это Джек Килби и Роберт Нойс. Первая советская ИС была создана с опозданием на три года. Но широкое применение интегральных схем началось лишь в начале 70-х годов. Эти чипы навсегда изменили образ вычислительных машин. В компьютерах третьего поколения, одна интегральная схема могла заменить до тысячи транзисторов и других базовых элементов. А каждый такой элемент мог заменять до нескольких десятков электронных ламп. Это давало огромную миниатюризацию и снижение себестоимости производства ЭВМ.

Для массового производства таких микросхем начали создавать отдельные производственные линии. Качество конечного продукта было достигнуто не сразу. По мере накопления опыта, наладили полный технологический процесс. Размер чипа может составлять несколько миллиметров. А размеры элементов измеряются в микронах.

Такое достижение в области миниатюризации дало возможность создавать компьютеры, размер которых был как письменный стол. Не нужны были отдельные помещения и целые залы. Весь вычислительный центр мог вмещаться в одной комнате. И для обеспечения питания таких ЭВМ достаточно два – четыре киловатта. И самое главное, что надежность компьютеров третьего поколения не намного уступает сегодняшней техники.

ЭВМ третьего поколения можно было встретить на борту самолета, корабля, подводной лодке, спутнике. Ощутимые плоды микроминиатюризации. Эти машины называли Мини-ЭВМ. И не смотря на то, что алфавитно-цифровые дисплеи появились еще во втором поколении машин. На третьем они окончательно закрепились. И стали неотъемлемой частью компьютера.

Одно из наиболее важных отличай второго и третьего поколения это появление открытой архитектуры ЭВМ. Яркий пример компьютер System/360 производство IBM. Открытая архитектура позволяет легко ремонтировать, заменять комплектующие. И самое главное, одни комплектующие могут подходить к разным моделям ЭВМ и даже к разным производителям ЭВМ. Производство этой серии машин начался 1964 г. И был крупнейшем успехом корпорации IBM. Она стала стандартом компьютеров во всем мире. В советской России, через восемь лет, появились ЭВМ ЕС (Единая Серия): ЭВМ ЕС-1010, ЕС-1020, ЕС-1030, ЕС-1040, ЕС-1060. В разработке этой серии учувствуют Болгария, Венгрия, Чехия. Начинается выпуск советских ЭВМ: Мир-31, Мир-32, АСВТ М-6000, АСВТ М-7000. Выпускаются так же более компактные ЭВМ: Электроника-79, Электроника-100, Электроника-125, Электроника-200.

ЭВМ ЕС-1010. Имеет быстродействие в 10 тысяч операций в секунду. ЕС-1020 быстродействие 20 тысяч операций в секунду, ОЗУ в 64 Кб, внешняя память на магнитных лентах и дисках.

Более мощным становиться программное обеспечение ЭВМ. Появляются первые текстовые редакторы. Но широкое распространение они так и не получают. Слишком дорого использовать Мини-ЭВМ вместо печатной машинки. Появляются системы управления базами данных. Они начинают повсеместно использоваться коммерческими организациями. Некоторые приобретают компьютеры только ради создания и управления своими базами данных. Компьютеры третьего поколения перестали быть роскошью для предприятий.

Первое и второе поколение машин использовали только военные, государственные ведомства и институты. Теперь они становятся доступными даже для не больших компаний. Средняя цена машины третьего поколения составляет 20-30 тыс. долларов. Что вполне под силу многим организациям. Появляются автоматизированные системы проектирования.

Возникает огромная потребность в прикладном программном обеспечении. Как следствие каждое предприятие нанимает свой штат программистов, которые решают текущие задачи. Рынка программного обеспечения как такового еще нет. Поэтому купить нужную программу или библиотеку невозможно. Многие ЭВМ третьего поколения, как и предыдущих поколений, не совместимы между собой аппаратно и программно. IBM, своей машиной System/360, только начинает исправлять эту ошибку.

 

Четвертое поколение ЭВМ 1974 – 1982. Новым этапом для развития ЭВМ послужили большие интегральные схемы (БИС). Элементная база компьютеров четвертого поколения- это БИС. Стремительное развитие электроники, позволило разместить на одном кристалле тысячи полупроводников. Такая миниатюризация привела к появлению недорогих компьютеров. Небольшие ЭВМ могли разместиться на одном письменном столе. Именно в эти годы зародился термин «Персональный компьютер». Исчезают огромные дорогостоящие монстры. За одним таким компьютером, через терминалы, работало сразу несколько десятков пользователей. Один человек – один компьютер. Машина стала, действительно персональной.

 

Характеристики ЭВМ четвертого поколения:

· Мультипроцессорность

· Языки высокого уровня

· Компьютерные сети

· Параллельная и последовательная обработка данных

 

Первым мини-компьютером считают PDP-8 корпорации DEC. Эта машина создавалась для управления ядерным реактором. Но она стала популярна на частных производственных предприятий и в высших учебных заведениях. Ее массовый выпуск начался 1965 году. Важный переход от мини-компьютеров к микро-компьютерам, это создание микропроцессора. Благодаря БИС стало возможным разместить все основные элементы центрального процессора на одном кристалле. Первым микропроцессором стал Intel-4004 созданный 1971 г. Он содержал в себе более двух тысяч полупроводников, которые разместились на одной подложке. В одной интегральной схеме разместились арифметическое - логическое устройство и управляющее устройство.

Одним из первых персональных компьютеров четвертого поколения считается Altair-8800. Созданный на базе микропроцессора Intel-8080. Его появление стимулировало рост периферийных устройств, компиляторов высокого уровня.

 

Интегральные схемы можно классифицировать по количеству элементов размещенных на одном кристалле:

ПИС – (Простые интегральные схемы) до 10 элементов

МИС – (Малые интегральные схемы) до 100 элементов

СИС – (Средние интегральные схемы) до 1 000 элементов

БИС – (Большие интегральные схемы) до 10 000 элементов

СБИС – (Сверхбольшие интегральные схемы) до 1 000 000 элементов

УБИС – (Ультрабольшие интегральные схемы) до 1 000 000 000 элементов

ГБИС – (Гигабольшие интегральные схемы) свыше 1 000 000 000 элементов

 

Применение БИС дало резкое улучшение основных показателей скорости работы и надежности. Такая высокая степень интеграции, привела к уменьшению числа монтажных операций, уменьшила количество внешних соединений, которые изначально не надежные. Это очень способствовало уменьшению размеров, стоимости и повышению надежности.

 

Однако появление БИС привело и к появлению проблем:

Проблема теплоотвода. Чем выше степень интеграции схемы , тем выше тепловыделение. Требуется постоянное охлаждение, без которого интегральная схема может перегреться и сгореть.

Проблема межсоединений элементов, контроля параметров.

Большие интегральные схемы уже начали применять в третьем поколении. Один из самых популярных компьютеров четвертого поколения это IBM System/370. Который в отличии от своего предшественника третьего поколения System/360, имел более мощную систему микрокоманд и большие возможности низкоуровневого программирования. В машинах серии System/370 программно была реализована виртуальная память. Когда часть дискового пространства отводилась для использования хранения временных данных. Тем самым эмулировалась оперативная память. У конечного пользователя создавалась впечатление, что ресурсов у машины больше чем есть на самом деле.

 

Технические характеристики ЭВМ четвертого поколения:

Применение модульности для создания программного обеспечения.

Средняя задержка сигнала 0.7 нс/вентиль.

Впервые модули операционной системы начали реализовывать на аппаратном уровне.

Базовым элементом оперативной памяти стал полупроводник. Чтение запись 100-150 нс.

К четвертому поколению советских ЭВМ можно отнести: ЕС-1015, ЕС-1025, ЕС-1035, ЕС-1045, ЕС-1055, ЕС-1065. Персональные компьютеры, которые стали популярны в быту: Электроника-85, Искра-226, ЕС-1840, ЕС-1841, ЕС-1842. К этому поколению относиться и многопроцессорный компьютер «Эльбрус», применяемый на производстве и машиносчетных станциях. Позже его сменил «Эльбрус-2». Вычислительная мощность этой машины, для четвертого поколения, была очень велика. Он имел порядка 64 мегабайт оперативной памяти, мог выполнять до 5 миллионов операций, с плавающей точкой, в секунду. Пропускная способность шины до 120 Мб/с.

 

Пятое поколение ЭВМ 1982 – наши дни.

Первое поколение- ламповые компьютеры,

второе поколение – транзисторные,

третье поколение – интегральные схемы,

четвертое поколение – микропроцессоры.

Но пятое поколение не имеет отношение к данной градации. Как предыдущее поколения. Пятое поколение компьютеров это название «плана действий» по развитию IT-индустрии. И не смотря на то, что пятое поколение базируется на микропроцессорах как и четвертое т.е. у них общая элементная база. А именно по этому критерию разделяют компьютеры на поколения. Тем не менее сегодняшние компьютеры относят к пятому поколению.

Япония начала свою широкомасштабную программу в начале 80-х. Их цель не изменять элементную базу компьютеров. А изменить и совершенствовать, технические подходы, методы программирования и развивать научное направление в области искусственного интеллекта. На начало своего проекта Япония вложила пол миллиарда долларов США. На тот момент она не была настолько технически развита как США, Европа. Министерство международной торговли и промышленности Японии поставило четкую цель – пробиться в лидеры. Именно в то время зародился термин «пятое поколение компьютеров». ЭВМ пятого поколения должны достигнуть сверхпроводимости и в них должно быть интегрировано огромное количество процессоров на одной подложке.

Японский центр по развитию и обработки информации поставил перед собой цели. Главной из них было развитие технологий по логической обработке знаний, одно из ведущих направлений искусственного интеллекта. Создание рабочих станций с высокой производительностью и распределенными функциями. Создание суперкомпьютеров пятого поколения для научных вычислений, которые будут оперировать огромными базами данных и базами знаний.

Одним из способов повышения производительности ЭВМ пятого поколения это реализация программных решений на аппаратном уровне, научные достижения в области искусственного интеллекта, необходимость переводить на практическую базу, машинный набор текста под диктовку с распознаванием речи, программный переводчик с языка на язык и программно определить смысл текста для принятия решения о том, в какую рубрику необходимо его поместить. Супер ЭВМ должны были решать задачи массового применения.

Данный проект Япония планировала завершить за 10 лет. И к началу 90-х выйти на новый уровень технического развития. На тот момент Япония прочно завоевала рынок бытовой электроники и автомобильной промышленности, что очень сильно беспокоило США. В ответ американцы начали развивать собственные программы в области параллельных вычислений. Наиболее крупными проектами занималась американская корпорация по Микроэлектроники и Компьютерной Технологии (MCC). Европа уверенна в будущем параллельных вычислений и начинает планы в этой отрасли Британская компания Alvey.

В советском союзе предприняли попытку не отстать от западных коллег. Было желание создать свой прототип ЭВМ пятого поколения. Для будущего мультипроцессорного компьютера, придумали яркое название «МАРС». Но уже тогда отставание от японцев, в области микроэлектроники, было на 10-15 лет. Весь проект базировался на старых инженерно-технических решениях. И морально устаревших языках программирования типа Модула-2. Удалось создать многопроцессорный компьютер «МАРС». Это было его единственное отличие от остальных ЭВМ. И данная машина не соответствовала определению: «компьютер пятого поколения».

Однако реализация проекта «компьютер пятого поколения» оказалось сложнее чем предполагалась изначально и не осуществима за десять лет. В качестве базового языка для ЭВМ пятого поколения, был выбран функциональный язык программирования «Пролог». Но он не поддерживал параллельные вычисления. Его работа в мультипроцессорной среде оказалась не эффективна. Не смотря на все попытки модернизировать его. Было принято решение по созданию новых типов языков программирования. Данная задача оказалась весьма сложной. Корпорациями занимающееся разработкой программного обеспечения были предложены новые языки. Но каждый из них обладал существенными недостатками. Что не позволяло в полной степени использовать параллельные вычисления.

Возникли и аппаратные трудности для создания ЭВМ пятого поколения. Техническое развитие быстро преодолело те трудности, которые перед началом проекта считались не выполнимыми. Параллельная работа нескольких процессоров, не давала той высокой производительности, на которую изначально рассчитывали. Разработанные в лаборатории машины быстро устаревали. Появлялись коммерческие компьютеры, которые по скорости уже превосходили их. Проект под названием «ЭВМ пятого поколения» оказался не удачным. Т.к. развитие информационных технологий пошло по другому пути.

Появился графический интерфейс пользователя. Который изначально не был предусмотрен в компьютерах пятого поколения. Появился Интернет, который изменил представления о структуре хранения и обработки информации. Развивались поисковые машины, которые использовали новые методы обработки данных.