Вопрос 8. Масс-спектрометрия.

Масс-спектрометрия (масс-спектроскопия, масс-спектрография, масс-спектральный анализ, масс-спектрометрический анализ) — метод исследования вещества путём определения отношения массы к заряду (качества) и количества заряженных частиц, образующихся при том или ином процессе воздействия на вещество (см.: ионизация). История масс-спектрометрии ведётся с основополагающих опытов Джона Томсона в начале XX века. Окончание «-метрия» термин получил после повсеместного перехода от детектирования заряженных частиц при помощи фотопластинок к электрическим измерениям ионных токов.

Существенное отличие масс-спектрометрии от других аналитических физико-химических методов состоит в том, что оптические, рентгеновские и некоторые другие методы детектируют излучение или поглощение энергии молекулами или атомами, а масс-спектрометрия непосредственно детектирует сами частицы вещества.

Масс-спектрометрия в широком смысле — это наука получения и интерпретации масс-спектров, которые в свою очередь получаются при помощи масс-спектрометров[1].

Масс-спектрометр — это вакуумный прибор, использующий физические законы движения заряженных частиц в магнитных и электрических полях, и необходимый для получения масс-спектра.

Масс-спектр, как и любой спектр, в узком смысле — это зависимость интенсивности ионного тока (количества) от отношения массы к заряду (качества). Ввиду квантования массы и заряда типичный масс-спектр является дискретным. Обычно (в рутинных анализах) так оно и есть, но не всегда. Природа анализируемого вещества, особенности метода ионизации и вторичные процессы в масс-спектрометре могут оставлять свой след в масс-спектре (см. метастабильные ионы, градиент ускоряющего напряжения по местам образования ионов, неупругое рассеивание). Так ионы с одинаковыми отношениями массы к заряду могут оказаться в разных частях спектра и даже сделать часть его непрерывным. Поэтому масс-спектр в широком смысле — это нечто большее, несущее специфическую информацию, и делающее процесс его интерпретации более сложным и увлекательным.

Ионы бывают однозарядные и многозарядные, причём как органические, так и неорганические. Большинство небольших молекул при ионизации приобретает только один положительный или отрицательный заряд. Атомы способны приобретать более одного положительного заряда и только один отрицательный. Белки, нуклеиновые кислоты и другие полимеры способны приобретать множественные положительные и отрицательные заряды.

Атомы химических элементов имеют специфическую массу. Таким образом, точное определение массы анализируемой молекулы, позволяет определить её элементный состав (см.: элементный анализ). Масс-спектрометрия также позволяет получить важную информацию об изотопном составе анализируемых молекул (см.: изотопный анализ).

В органических веществах молекулы представляют собой определённые структуры, образованные атомами. Природа и человек создали поистине неисчислимое многообразие органических соединений. Современные масс-спектрометры способны фрагментировать детектируемые ионы и определять массу полученных фрагментов. Таким образом, можно получать данные о структуре вещества.

Первое, что надо сделать для того, чтобы получить масс-спектр, — превратить нейтральные молекулы и атомы, составляющие любое органическое или неорганическое вещество, в заряженные частицы — ионы. Этот процесс называется ионизацией и по-разному осуществляется для органических и неорганических веществ. Вторым необходимым условием является перевод ионов в газовую фазу в вакуумной части масс спектрометра. Глубокий вакуум обеспечивает беспрепятственное движение ионов внутри масс-спектрометра, а при его отсутствии ионы рассеются и рекомбинируют (превратятся обратно в незаряженные частицы).

В неорганической химии для анализа элементного состава применяются жёсткие методы ионизации, так как энергии связи атомов в твёрдом теле гораздо больше и значительно более жёсткие методы необходимо использовать для того, чтобы разорвать эти связи и получить ионы.

Полученные при ионизации ионы с помощью электрического поля переносятся в масс-анализатор. Там начинается второй этап масс- спектрометрического анализа — сортировка ионов по массам (точнее по отношению массы к заряду, или m/z). Существуют следующие типы масс-анализаторов:

1)непрерывные масс-анализаторы

2)импульсные масс-анализаторы

Разница между непрерывными и импульсными масс-анализаторами заключается в том, что в первые ионы поступают непрерывным потоком, а во вторые — порциями, через определённые интервалы времени.

Масс-спектрометр может иметь два масс-анализатора. Такой масс-спектрометр называют тандемным. Тандемные масс спектрометры применяются, как правило, вместе с «мягкими» методами ионизации, при которых не происходит фрагментации ионов анализируемых молекул (молекулярных ионов). Таким образом первый масс-анализатор анализирует молекулярные ионы. Покидая первый масс-анализатор, молекулярные ионы фрагментируются под действием соударений с молекулами инертного газа или излучения лазера, после чего их фрагменты анализируются во втором масс-анализаторе. Наиболее распространёнными конфигурациями тандемных масс спектрометров являются квадруполь-квадрупольная и квадруполь-времяпролётная.

Детекторы

Итак, последним элементом описываемого нами упрощённого масс-спектрометра, является детектор заряженных частиц. Первые масс-спектрометры использовали в качестве детектора фотопластинку. Сейчас используются динодные вторично-электронные умножители, в которых ион, попадая на первый динод, выбивает из него пучок электронов, которые в свою очередь, попадая на следующий динод, выбивают из него ещё большее количество электронов и т. д. Другой вариант — фотоумножители, регистрирующие свечение, возникающее при бомбардировке ионами люминофора. Кроме того, используются микроканальные умножители, системы типа диодных матриц и коллекторы, собирающие все ионы, попавшие в данную точку пространства (коллекторы Фарадея).

Хромато-масс-спектрометрия

Масс-спектрометры используются для анализа органических и неорганических соединений. Органические вещества в большинстве случаев представляют собой многокомпонентные смеси индивидуальных компонентов. Например, показано, что запах жареной курицы составляют 400 компонентов (то есть, 400 индивидуальных органических соединений). Задача аналитики состоит в том, чтобы определить сколько компонентов составляют органическое вещество, узнать какие это компоненты (идентифицировать их) и узнать сколько каждого соединения содержится в смеси. Для этого идеальным является сочетание хроматографии с масс-спектрометрией. Газовая хроматография как нельзя лучше подходит для сочетания с ионным источником масс-спектрометра с ионизацией электронным ударом или химической ионизацией, поскольку в колонке хроматографа соединения уже находятся в газовой фазе. Приборы, в которых масс-спектрометрический детектор скомбинирован с газовым хроматографом, называются хромато-масс-спектрометрами («Хромасс»).

Многие органические соединения невозможно разделить на компоненты с помощью газовой хроматографии, но можно с помощью жидкостной хроматографии. Для сочетания жидкостной хроматографии с масс-спектрометрией сегодня используют источники ионизации в электроспрее (ESI) и химической ионизации при атмосферном давлении (APCI), а комбинацию жидкостных хроматографов с масс-спектрометрами называют ЖХ/МС (англ. LC/MS). Самые мощные системы для органического анализа, востребованные современной протеомикой, строятся на основе сверхпроводящего магнита и работают по принципу ионно-циклотронного резонанса. Они также носят название FT/MS, поскольку в них используется Фурье преобразование сигнала.

Масс-спектрометр

Масс-спектрометр - прибор для разделения ионизированных частиц вещества (молекул, атомов) по их массам, основанный на воздействии магнитных и электрических полей на пучки ионов, летящих в вакууме. Регистрация ионов в данном устройстве осуществляется электрическими методами.

Принцип работы.

Нейтральный атом не подвержен действию электрического и магнитного поля. Однако, если отнять у него или добавить ему один и более электронов, то он превратится в ион, характер движения которого в этих полях будет определяться его массой и зарядом. Строго говоря, в масс-спектрометрах определяется не масса, а отношение массы к заряду. Если заряд известен, то однозначно определяется масса иона, а значит масса нейтрального атома и его ядра.

Этап 1: Ионизация

Образование положительно заряженного иона, путем выбивания одного или нескольких электронов из атома (масс-спектрометры всегда работают с положительными ионами).

Этап 2: Ускорение

Ионы ускоряются таким образом, чтобы у всех была одна и та же кинетическая энергия.

Этап 3: Отклонение

Ионы отклоняются от траектории магнитным полем согласно их массам. Чем легче ион, тем больше он отклоняется. Величина отклонения также зависит от числа положительных зарядов в ионе - другими словами, от того, сколько электронов было выбито на первом этапе. Чем больше ион заряжен, тем больше он отклоняется.

Этап 4: Детектирование

Пучок ионов, прошедший через прибор, детектируется электронными средствами.

Область применения:

Анализ масс-спектрометром смеси атомов различной массы позволяет определить их относительное содержание в этой смеси. В частности, может быть установлено содержание различных изотопов какого-либо химического элемента.