Классификация в зависимости от вида горящих веществ и материалов

  • Пожар класса «А» — горение твёрдых веществ.
    • А1 — горение твёрдых веществ, сопровождаемое тлением (уголь, текстиль).
    • А2 — горение твёрдых веществ, не сопровождаемых тлением (пластмасса).
  • Пожар класса «Б» — Горение жидких веществ.
    • Б1 — горение жидких веществ нерастворимых в воде (бензин, эфир, нефтепродукты). Также, горение сжижаемых твёрдых веществ. (парафин, стеарин).
    • Б2 — Горение жидких веществ растворимых в воде (спирт, глицерин).
  • Пожар класса «С» — горение газообразных веществ.
    • Горение бытового газа, пропана и др.
  • Пожар класса «Д» — горение металлов.
    • Д1 — (горение лёгких металлов, за исключением щелочных). Алюминий, магний и их сплавы.
    • Д2 — Горение редкоземельных металлов (натрий, калий).
    • Д3 — горение металлов, содержащих соединения.
  • Пожар класса «Е» — горение электроустановок.

 

17. Полное и неполное горение твердых веществ

 

Го­ре­ние - это хи­ми­че­с­кая ре­ак­ция оки­с­ле­ния, со­про­во­ж­да­ю­ща­я­ся вы­де­ле­ни­ем боль­шо­го ко­ли­чест­ва те­п­ла и све­че­ни­ем.

Для про­цес­са го­ре­ния не­об­хо­ди­мо:

· на­ли­чие го­рю­чей сре­ды, со­сто­я­щей ив го­рю­че­го ве­ще­ст­ва и оки­с­ли­те­ля;

· ис­то­ч­ни­ка вос­пла­ме­не­ния.

Что­бы воз­ник про­цесс го­ре­ния, го­рю­чая сре­да дол­ж­на быть на­гре­та до оп­ре­де­лен­ной тем­пе­ра­ту­ры при по­мо­щи ис­то­ч­ни­ка вос­пла­ме­не­ния (пла­мя, ис­кра элек­т­ри­че­с­ко­го или ме­ха­ни­че­с­ко­го про­ис­хо­ж­де­ния, на­ка­лен­ные те­ла, те­п­ло­вое про­яв­ле­ние хи­ми­че­с­кой, элек­т­ри­че­с­кой или ме­ха­ни­че­с­кой энер­гий).

Раз­ли­ча­ют сле­ду­ю­щие ви­ды го­ре­ния:

- по­л­ное - го­ре­ние при до­с­та­то­ч­ном ко­ли­че­ст­ве или из­быт­ке ки­с­ло­ро­да;

- не­по­л­ное - го­ре­ние при не­до­с­тат­ке ки­с­ло­ро­да.

При по­л­ном го­ре­нии про­ду­к­та­ми сго­ра­ния яв­ля­ют­ся дву­окись уг­ле­ро­да (CO2), во­да (H2O), азот (N), сер­ни­стый ан­ги­д­рид (SO2), фо­с­фор­ный ан­ги­д­рид. При неполном го­ре­нии обы­ч­но об­ра­зу­ют­ся ед­кие, ядо­ви­тые го­рю­чие и взры­во­о­па­с­ные продук­ты: окись уг­ле­ро­да, спир­ты, ки­с­ло­ты, аль­де­ги­ды. Го­ре­ние ве­ществ мо­жет про­те­кать не толь­ко в сре­де ки­с­ло­ро­да, но так­же в сре­де не­ко­то­рых ве­ществ, не со­дер­жа­щих ки­с­ло­ро­да, хло­ра, па­ров бро­ма, се­ры. Го­рю­чие ве­ще­ст­ва мо­гут быть в трех аг­ре­гат­ных со­сто­я­ни­ях: жид­ком, твер­дом, га­зо­об­раз­ном. От­дель­ные твер­дые ве­ще­ст­ва при на­гре­ва­нии пла­вят­ся и ис­па­ря­ют­ся, дру­гие - раз­ла­га­ют­ся и вы­де­ля­ют га­зо­об­раз­ные про­ду­к­ты и твер­дый ос­та­ток в ви­де уг­ля и шла­ка, тре­тьи не раз­ла­га­ют­ся и не пла­вят­ся.

18. Процессы горения и взрыва. Условия и виды горения. Горения газов и пыли

Го­ре­ние - это хи­ми­че­с­кая ре­ак­ция оки­с­ле­ния, со­про­во­ж­да­ю­ща­я­ся вы­де­ле­ни­ем боль­шо­го ко­ли­чест­ва те­п­ла и све­че­ни­ем.

Взрыв - это ча­ст­ный слу­чай го­ре­ния, про­те­ка­ю­ще­го мгно­вен­но с крат­ко­вре­мен­ным вы­де­ле­ни­ем зна­чи­тель­но­го ко­ли­че­ст­ва те­п­ла и све­та.

Ва­ж­ней­шим во­п­ро­сом те­о­рии го­ре­ния яв­ля­ет­ся рас­про­стра­не­ние пла­ме­ни (зо­ны ре­з­ко­го воз­рас­та­ния тем­пе­ра­ту­ры и ин­тен­сив­ной ре­ак­ции). Раз­ли­ча­ют сле­ду­ю­щие ре­жи­мы рас­про­стра­не­ния пла­ме­ни (го­ре­ния):

 

- нор­маль­ный ре­жим го­ре­ния;

- де­фле­гра­ци­он­ное го­ре­ние;
- де­то­на­ция.

а) Нор­маль­ный ре­жим го­ре­ния на­блю­да­ет­ся при спо­кой­ном ге­те­ро­ген­ном двух­фаз­ном диф­фу­зи­он­ном го­ре­нии. Ско­рость го­ре­ния бу­дет оп­ре­де­лять­ся ско­ро­стью диф­фу­зии ки­с­ло­ро­да к го­рю­че­му ве­ще­ст­ву в зо­ну го­ре­ния. Рас­про­стра­не­ние пла­ме­ни про­ис­хо­дит от ка­ж­дой то­ч­ки фрон­та пла­ме­ни по нор­ма­ли к его по­верх­но­сти. Та­кое го­ре­ние и ско­рость рас­про­стра­не­ния пла­ме­ни по не­под­ви­ж­ной сме­си вдоль нор­ма­ли к его по­верх­но­сти на­зы­ва­ют нор­маль­ным. Нор­маль­ные ско­ро­сти го­ре­ния не­ве­ли­ки. В этом слу­чае по­вы­ше­ния да­в­ле­ния и об­ра­зо­ва­ния удар­ной во­л­ны не про­ис­хо­дит.

б) В ре­аль­ных ус­ло­ви­ях вслед­ст­вие про­те­ка­ния вну­т­рен­них про­цес­сов и при внеш­них ос­ло­ж­ня­ю­щих фа­к­то­рах про­ис­хо­дит ис­кри­в­ле­ние фрон­та пла­ме­ни, что при­во­дит к ро­с­ту ско­ро­сти го­ре­ния. При до­с­ти­же­нии ско­ро­стей рас­про­стра­не­ния пла­ме­ни до де­сят­ков и со­тен ме­т­ров в се­кун­ду, но не пре­вы­ша­ю­щих ско­ро­сти зву­ка в дан­ной сре­де (300 – 320м/сек) про­ис­хо­дит взрыв­ное (де­фле­гра­ци­он­ное) го­ре­ние. При взрыв­ном го­ре­нии про­ду­к­ты го­ре­ния на­гре­ва­ют­ся до 1.5-3.0 ты­сяч °С, а да­в­ле­ние в за­кры­тых си­с­те­мах уве­ли­чи­ва­ет­ся до 0.б-0.9МПа. Про­дол­жи­тель­ность ре­ак­ции го­ре­ния до взрыв­но­го ре­жи­ма со­ста­в­ля­ет для га­зов ~0.1 сек, па­ров ~0.2 – 0.3 сек, пы­ли ~0.5 сек. При­ме­ни­тель­но к слу­чай­ным про­мыш­лен­ным взры­вам под де­фле­б­ра­ци­ей обы­ч­но по­ни­ма­ют го­ре­ние об­ла­ка с ви­ди­мой ско­ро­стью по­ряд­ка 100 - 300 м/сек, при ко­то­рой ге­не­ри­ру­ют­ся удар­ные во­л­ны с ма­к­си­маль­ным да­в­ле­ни­ем 20 - 100 кПа.

в) В оп­ре­де­лен­ных ус­ло­ви­ях взрыв­ное го­ре­ние мо­жет пе­рей­ти в де­то­на­ци­он­ный про­цесс, при ко­то­ром ско­рость рас­про­стра­не­ния пла­ме­ни пре­вы­ша­ет ско­рость рас­про­стра­не­ния зву­ка и до­с­ти­га­ет 1 - 5 км/сек. При этом воз­ни­ка­ет удар­ная во­л­на, во фрон­те ко­то­рой ре­з­ко по­вы­ша­ет­ся плот­ность, да­в­ле­ние тем­пе­ра­ту­ра сме­си. При воз­рас­та­нии этих па­ра­ме­т­ров сме­си до са­мо­вос­пла­ме­не­ния го­ря­чих ве­ществ воз­ни­ка­ет де­то­на­ци­он­ная во­л­на, яв­ля­ю­ща­я­ся ре­зуль­та­том сло­же­ния удар­ной во­л­ны и об­ра­зу­ю­щей­ся зо­ны сжа­той бы­ст­ро­ре­а­ги­ру­ю­щей (са­мо­вос­пла­ме­ня­ю­щей­ся) сме­си. Про­цесс хи­ми­че­с­ко­го пре­вра­ще­ния го­рю­чих ве­ществ, ко­то­рый вво­дит­ся удар­ной во­л­ной и со­про­во­ж­да­ет­ся бы­ст­рым вы­де­ле­ни­ем энер­гии, на­зы­ва­ет­ся де­то­на­ци­ей. При де­то­на­ци­он­ном ре­жи­ме го­ре­ния об­ла­ка ГВ боль­шая часть энер­гии взры­ва пе­ре­хо­дит в воз­душ­ную удар­ную во­л­ну, при де­фле­гра­ци­он­ном го­ре­нии со ско­ро­стью рас­про­стра­не­ния пла­ме­ни ~200 м/сек пе­ре­ход энер­гии в во­л­ну со­ста­в­ля­ет от 30 до 40%.

 

 

Взрыв - это ос­во­бо­ж­де­ние боль­шо­го ко­ли­че­ст­ва энер­гии в ог­ра­ни­чен­ном объ­е­ме за ко­рот­кий про­ме­жу­ток вре­ме­ни. Взрыв при­во­дит к об­ра­зо­ва­нию силь­но на­гре­то­го га­за (плаз­мы) с очень вы­со­ким да­в­ле­ни­ем, ко­то­рый при мо­мен­таль­ном рас­ши­ре­нии ока­зы­ва­ет удар­ное ме­ха­ни­че­с­кое воз­дей­ст­вие (да­в­ле­ние, раз­ру­ше­ние) на окружающие те­ла.

Взрыв в твер­дой сре­де со­про­во­ж­да­ет­ся ее раз­ру­ше­ни­ем и дроб­ле­ни­ем, в воз­душ­ной или вод­ной - вы­зы­ва­ет об­ра­зо­ва­ние воз­душ­ной или ги­д­ра­в­ли­че­с­кой удар­ных волн, ко­то­рые и ока­зы­ва­ют раз­ру­ша­ю­щее воз­дей­ст­вие на по­ме­щен­ные в них объ­е­к­ты. В де­я­тель­но­сти, не свя­зан­ной с пред­на­ме­рен­ны­ми взры­ва­ми в ус­ло­ви­ях про­мыш­лен­но­го про­из­вод­ст­ва, под взры­вом сле­ду­ет по­ни­мать бы­ст­рое, не­уп­ра­в­ля­е­мое вы­сво­бо­ж­де­ние энер­гии, ко­то­рое вы­зы­ва­ет удар­ную во­л­ну, дви­жу­щу­ю­ся на некотором уда­ле­нии от ис­то­ч­ни­ка.

Взрыв­ная во­л­на - есть дви­же­ние сре­ды, по­ро­ж­ден­ное взры­вом, при ко­то­ром про­ис­хо­дит ре­з­кое по­вы­ше­ние да­в­ле­ния, плот­но­сти и тем­пе­ра­ту­ры сре­ды. Фронт (пе­ред­няя гра­ни­ца) взрыв­ной во­л­ны рас­про­стра­ня­ет­ся по сре­де с боль­шой ско­ро­стью, в ре­зуль­та­те че­го об­ласть, ох­ва­чен­ная дви­же­ни­ем, бы­ст­ро рас­ши­ря­ет­ся. По­сред­ст­вом взрыв­ной во­л­ны (или раз­ле­та­ю­щих­ся про­ду­к­тов взры­ва - в ва­ку­у­ме) взрыв про­из­во­дит ме­ха­ни­че­с­кое воз­дей­ст­вие на объ­е­к­ты, на­хо­дя­щи­е­ся на раз­ли­ч­ных уда­ле­ни­ях от ме­с­та взры­ва. По ме­ре уве­ли­че­ния рас­сто­я­ния от ме­с­та взры­ва ме­ха­ни­че­с­кое воз­дей­ст­вие взрыв­ной во­л­ны ос­ла­бе­ва­ет. Та­ким об­ра­зом, взрыв не­сет по­тен­ци­аль­ную опа­с­ность по­ра­же­ния лю­дей и об­ла­да­ет раз­ру­ши­тель­ной спо­соб­но­стью.

Взрыв мо­жет быть вы­зван:

- де­то­на­ци­ей кон­ден­си­ро­ван­ных взрыв­ча­тых ве­ществ (ВВ);

- бы­ст­рым сго­ра­ни­ем вос­пла­ме­ня­ю­ще­го об­ла­ка га­за или пы­ли;

- вне­зап­ным раз­ру­ше­ни­ем со­су­да со сжа­тым га­зом или с пе­ре­гре­той жид­ко­стью;

- сме­ши­ва­ни­ем пе­ре­гре­тых твер­дых ве­ществ (рас­пла­ва) с хо­лод­ны­ми жид­ко­стя­ми

 

19.Первичные средства пожаротушения, их состав.

К первичным средствам пожаротушения относятся простейшие приборы, используемые рабочими или служащими и членами ДПД при возникновении пожара. К таким приборам относятся: внутренние пожарные краны, оборудованные рукавами и стволами, ручные огни тушители и др.

Огнетушители - простейшие приборы, предназначенные для первичного пожаротушения. В качестве огнетушащего средства в огнетушителях используют химическую или воздушно-механическую пену, двуокись углерода (в жидком состоянии), аэрозольные бромсодержаие составы и порошки.

В химических пенных огнетушителях образование пены в момент их использования происходит за счет химической реакции, протекающей при смешивании кислотной и щелочной частей заряда. Выделяющаяся при ' реакции газообразная двуокись углерода создает в баллоне огнетушителя повышенное давление, благодаря чему происходит выталкивание струи пены через специальное отверстие - спрыск.

В настоящее время применяют ручной химический огнетушитель ОХП-10 (прежнее обозначение ОП-5). Длина выбрасываемой огнетушителем струи пены около 8 м, а продолжительность его работы 60...65 с.

Огнетушитель при зарядке заливают водой (8,7 л), в которой предварительно растворяют щелочную часть заряда (смесь 400 г бикарбоната натрия и 50 г солодкового экстракта). Кислотная часть заряда (смесь серной кислоты и сернокислого окисного железа) находится в стеклянных или пластмассовых стаканах, ввинчиваемых в горловину корпуса огнетушителя. Способ приведения огнетушителя в действие описан в специальной инструкции, которая помещена на его корпусе. Химические пенные огнетушители предназначены для тушения загораний всех твердых веществ, которые допускается тушить водой, а также легковоспламеняющихся и горючих жидкостей (бензин, керосин и др.), кроме спиртов, ацетона и сероуглерода. Одним огнетушителем можно потушить горящую жидкость на площади около 0,75 м2. Наряду с этим могут применяться и воздушно-пенные огнетушители- ручные ОВП-10 и перевозимые ОПП-100.

Огнетушители на основе двуокиси углерода (углекислотные) и галоидированных углеводородов (аэрозольные) предназначены для тушения загораний электрических установок, находящихся под напряжением, двигателей внутреннего сгорания, автомобилей, а также особо ценных материалов и оборудования (в музеях, архивах, библиотеках и т. П.). В настоящее время выпускаются следующие типы углекислотных огнетушителей: ОУ-5 и ОУ-8. Огнетушитель состоит из стального баллона вместимостью 5 л для ОУ-5 и 8 л для ОУ-8, запорно-пускового приспособления (вентиля) и диффузора (раструба), предназначенного для получения снегообразной двуокиси углерода.

Огнетушитель заполняют жидкой двуокисью углерода (3,45...3,65 кг для ОУ-5 и 5,5...5,7 кг для ОУ-8) под давлением 7-Ю6 Па. При приведении огнетушителя в действие жидкая двуокись углерода изливается через диффузор, образуя в 400-500 раз больше газа (по сравнению с объемом двуокиси углерода в жидком состоянии). Быстрое испарение двуокиси углерода приводит к образованию снега, имеющего температуру -79 °С, который весьма интенсивно отнимает тепло от горящего вещества или материала. Длина выбрасываемой струи составляет 2 м для ОУ-5 и 3,5 м для ОУ-8; продолжительность работы - соответственно 30-35 и 35-40 с.

В последнее время начали также применять огнетушители, в которых в качестве огнетушащих веществ используют галоиднрованные углеводороды (в частности, фреон 114В2 и состав «3,5») и огнетушащие порошки. Работа порошковых ручных огнетушителей ОПС-6 и ОПС-10 основана на принципе выбрасывания огнетушащего порошка под действием сжатого воздуха, заключенного в баллончике, присоединенном к корпусу огнетушителя. Эти огнетушители предназначены для тушения загораний щелочных металлов. Огнетушитель ОПС-6 содержит 6 кг, а ОПС-10- 10 кг порошка, максимальное рабочее давление в обоих огнетушителях 1-Ю6 Па. При помощи этих огнетушителей можно потушить поверхность горения металла 0,15 м2 (ОПС-6) и 0,25 м2 (ОПС-10); продолжительность работы составляет соответственно 40-70 и 45-80 с. На крупных стройках можно также использовать передвижные порошковые огнетушители типа ОПП-100.

В качестве первичных средств пожаротушения могут быть также использованы песок, кошма или асбестовое покрывало.

 

20. Причины образования больших переходных сопротивлений в переходных цепях и их пожарная опасность.

 

Пожарную опасность может представлять любая электрическая цепь, в которую локально, в течение определенного времени подключается мощность более 15 Вт. В этот диапазон входит большинство электрических изделий.
Опасность возникновения пожаров при эксплуатации электроустановок заключается в наличии сгораемой изоляции электрических сетей, машин и аппаратов, кислорода воздуха (или другого окислителя) и источника зажигания (электрического тока). Большинство изоляционных материалов (хлопчатобумажная и шелковая ткань, резина, лакоткани, бумага, картон, полистирол, полиэтилен, поливинилхлорид, трансформаторное масло и др.) сгораемые.
Причинами пожаров могут быть аварийные режимы работы электротехнических изделий: короткие замыкания, перегрузки проводников, машин и аппаратов; искры и электродуги; большие переходные сопротивления; вихревые токи, возникающие в массивных металлических деталях в результате изменения магнитных потоков, индуктирующих ЭДС (эти индуктированные токи замыкаются накоротко в толще деталей).
Перегрузкой называется такое явление, когда по электрическим проводам и электрическим приборам идет ток больше допустимого. Опасность перегрузки объясняется тепловым действием тока.
Коротким замыканием (КЗ) называется всякое замыкание между проводами, или между проводом и землей. Опасность КЗ заключается в увеличении в сотни тысяч ампер силы тока, что приводит к выделению в самый незначительный промежуток времени большого количества тепла в проводниках, а это вызывает резкое повышение температуры и воспламенение изоляции, расплавление материала проводника с выбросом искр, способных вызвать пожар горючих материалов.
Переходным сопротивлением (ПС) называется сопротивление, возникающее в местах перехода тока с одного провода на другой или с провода на какой-либо электроаппарат при наличии плохого контакта в местах соединений и оконцеваний (при скрутке, например). При прохождении тока в таких местах за единицу времени выделяется большое количество теплоты. Если нагретые контакты соприкасаются с горючими материалами, то возможно их воспламенение, а при наличии взрывоопасных смесей взрыв. В этом и заключается опасность ПС.
Искрение и электродугаесть результат прохождения тока через воздух. Искрение наблюдается при размыкании электрических цепей под нагрузкой (например, когда вынимается электровилка из электророзетки), при пробое изоляции между проводниками, а также во всех случаях при наличии плохих контактов в местах соединения и оконцевания проводов и кабелей. Искры и электродуги при наличии в помещении горючих веществ или взрывоопасных смесей могут быть причиной пожара и взрыва.
В соответствии с Правилами устройства электроустановок (ПУЭ) помещения и наружные установки, в зависимости от способности к образованию взрывоопасных смесей или возгоранию находящихся в них материалов и веществ, делятся на взрыво- и пожароопасные. Класс взрыво- и пожароопасных зон, в соответствии с которым выбирают электрооборудование, определяется технологами совместно с электриками проектной или эксплуатирующей организации. По нормам технологического проектирования или по перечням производств, утвержденным в установленном порядке соответствующими министерствами и ведомствами, устанавливаются как категории помещений, так и классы зон.

Взрывоопасной зоной называется помещение или ограниченное пространство в помещении (в радиусе 5 м) или наружной установке, в котором имеются или могут образоваться взрывоопасные смеси.
Зоны класса B-I - зоны, расположенные в помещениях, в которых выделяются горючие газы или пары ЛВЖ в таком количестве и с такими свойствами, что они могут образовать с воздухом взрывоопасные смеси при нормальных режимах работы, например при загрузке или разгрузке технологических аппаратов, хранении или переливании ЛВЖ, находящихся в открытых емкостях, и т.п.

Зоны класса В-Ia - зоны, расположенные в помещениях, в которых при нормальной эксплуатации взрывоопасные смеси горючих газов (независимо от нижнего концентрационного предела воспламенения) или паров ЛВЖ с воздухом не образуются, а возможны только в результате аварий или неисправностей.

Зоны класса B-Iб - зоны, расположенные в помещениях, в которых при нормальной эксплуатации взрывоопасные смеси горючих газов или паров ЛВЖ с воздухом не образуются, а возможны только в результате аварий или неисправностей и которые отличаются одной из следующих особенностей:

1. Горючие газы в этих зонах обладают высоким нижним концентрационным пределом воспламенения (15% и более) и резким запахом при предельно допустимых концентрациях по ГОСТ 12.1.005 (например, машинные залы аммиачных компрессорных и холодильных абсорбционных установок).
2. Помещения производств, связанных с обращением газообразного водорода, в которых по условиям технологического процесса исключается образование взрывоопасной смеси в объеме, превышающем 5% свободного объема помещения, имеют взрывоопасную зону только в верхней части помещения. Взрывоопасная зона условно принимается от отметки 0,75 общей высоты помещения, считая от уровня пола, но не выше кранового пути, если таковой имеется (например, помещения электролиза воды, зарядные станции тяговых и стартерных аккумуляторных батарей).

Зоны класса В-Iг- пространства у наружных установок: технологических установок, содержащих горючие газы или ЛВЖ, надземных и подземных резервуаров с ЛВЖ или горючими газами (газгольдеры), эстакад для слива и налива ЛВЖ, открытых нефтеловушек, прудов-отстойников с плавающей нефтяной пленкой и т.п.

Зоны класса В-II - зоны, расположенные в помещениях, в которых выделяются переходящие во взвешенное состояние горючие пыли или волокна в таком количестве и с такими свойствами, что они способны образовать с воздухом взрывоопасные смеси при нормальных режимах работы (например, при загрузке и выгрузке технологических аппаратов).
Зоны класса В-IIа - зоны, расположенные в помещениях, в которых опасные состояния, указанные в В-II, не имеют места при нормальной эксплуатации, а возможны только в результате аварий или неисправностей.

Пожароопасной зоной называется пространство внутри и вне помещений, в пределах которого постоянно или периодически обращаются горючие (сгораемые) вещества и в котором они могут находиться при нормальном технологическом процессе или при его нарушениях.
Зоны класса П-I - зоны, расположенные в помещениях, в которых обращаются горючие жидкости с температурой вспышки выше 61°С.

Зоны класса П-II - зоны, расположенные в помещениях, в которых выделяются горючие пыль или волокна с нижним концентрационным пределом воспламенения более 65 г/м3 к объему воздуха.
Зоны класса П-IIа - з оны, расположенные в помещениях, в которых обращаются твердые горючие вещества.

Зоны класса П-III - расположенные вне помещений зоны, в которых обращаются горючие жидкости с температурой вспышки выше 61°С или твердые горючие вещества.

Проектирование, монтаж, эксплуатацию электрических сетей, электроустановок и электротехнических изделий, а также контроль за их техническим состоянием необходимо осуществлять в соответствии с требованиями нормативных документов по электроэнергетике. Электроустановки и бытовые электроприборы в помещениях, в которых по окончании рабочего времени отсутствует дежурный персонал, должны быть обесточены, за исключением дежурного освещения, установок пожаротушения и противопожарного водоснабжения, пожарной и охранно-пожарной сигнализации. Другие электроустановки и электротехнические изделия (в том числе в жилых помещениях) могут оставаться под напряжением, если это обусловлено их функциональным назначением и (или) предусмотрено требованиями инструкции по эксплуатации
Не допускается прокладка и эксплуатация воздушных линий электропередачи (в том числе временных и проложенных кабелем) над горючими кровлями, навесами, а также открытыми складами (штабелями, скирдами и др.) горючих веществ, материалов и изделий
При эксплуатации действующих электроустановок запрещается:

• использовать приемники электрической энергии (электроприемники) в условиях, не соответствующих требованиям инструкций организаций-изготовителей, или приемники, имеющие неисправности, которые в соответствии с инструкцией по эксплуатации могут привести к пожару, а также эксплуатировать электропровода и кабели с поврежденной или потерявшей защитные свойства изоляцией;
• пользоваться поврежденными розетками, рубильниками, другими электроустановочными изделиями;
• обертывать электролампы и светильники бумагой, тканью и другими горючими материалами, а также эксплуатировать светильники со снятыми колпаками (рассеивателями), предусмотренными конструкцией светильника;
• пользоваться электроутюгами, электроплитками, электрочайниками и другими электронагревательными приборами, не имеющими устройств тепловой защиты, без подставок из негорючих теплоизоляционных материалов, исключающих опасность возникновения пожара;
• применять нестандартные (самодельные) электронагревательные приборы, использовать некалиброванные плавкие вставки или другие самодельные аппараты защиты от перегрузки и короткого замыкания;
• размещать (складировать) у электрощитов, электродвигателей и пусковой аппаратуры горючие (в том числе легковоспламеняющиеся) вещества и материалы.

 

 

21. Сущность и отличие процессов самовоспламенения и самовозгорания

При обычной или относительно невысокой температуре к молекулам горючих веществ присоединяются молекулы кислорода. При этом отдельные из них ведут себя как ненасыщенные и распадаются, образуя активный кислород. Эти молекулы легко вступают в соединения с веществами, образуя перекиси и гидроперекиси.

Перекисные соединения, ввиду своей неустойчивости, склонны к разложению. Получаемые при распаде атомарный кислород и свободные радикалы обладают избытком энергии для дальнейшего окисления. В этом состоит теория автоокисления А. Н. Баха, объясняющая процессы окисления, самопроизвольно происходящие в естественных условиях.

Н. Н. Семенов разработал цепную теорию окисления, сущность которой заключается в том, что при воздействии на молекулы горючих веществ лучистой энергии, электрического разряда или тепла они, поглощая некоторое количество энергии, распадаются на атомы и радикалы, т. е. на частицы с повышенной химической активностью, которые затем становятся центрами цепных реакций. Цепная теория окисления является дальнейшим продолжением и развитием теории автоокисления. Она показывает кинетику процесса окисления, объясняет причины самоускорения этого процесса.

При окислении всегда выделяется тепло. Если при реакции окисления скорость тепловыделения превысит скорость теплоотвода, то реакция окисления будет самоускоряющейся. При этом горючее вещество может нагреться до такой температуры, когда возникнет процесс горения. Произойдет самовоспламенение.

Таким образом, под самовоспламенением понимают возникновение горения при нагревании вещества в процессе самоускоряющейся реакции окисления при отсутствии внешнего источника зажигания.

Самая низкая температура вещества, при нагревании до которой происходит резкое увеличение скорости экзотермических реакций, приводящая к возникновению пламенного горения, называется температурой самовоспламенения.

Самопроизвольное возникновение горения в естественных условиях хранения вещества вызывается самовозгоранием. Оно, по существу, является тем же процессом самовоспламенения, но начинающимся без подвода тепла извне. Начальным импульсом самовозгорания является теплота, выделяемая в результате экзотермических химических или физико-химических процессов, протекающих при определенных условиях в горючем веществе.

К самовозгоранию склонны каменный уголь, торф, растительные и животные масла, сульфиды железа и некоторые другие химические вещества. При соприкосновении с воздухом самовозгораются белый фосфор, порошки алюминия, бронзы и железа, сажа и скипидар.


 

22. Причины возникновения и пожарная опасность перегрузок в электрических сетях

Источником зажигания является тепло, выделяемое электрическими сетями и приборами в аварийных режимах работы. Короткое замыкание, перегрузка, переходные сопротивления - характерные проявления аварийных режимов.

Перегрузкой называется такое явление, когда по электрическим проводам и электрическим приборам идет ток больше допустимого. Опасность перегрузки объясняется тепловым действием тока. При двукратной и большей перегрузке сгораемая изоляция проводников воспламеняется. При небольших перегрузках происходит быстрое старение изоляции и срок ее диэлектрических свойств сокращается. Так, перегрузка проводов на 25% сокращает срок службы их примерно до 3-5 месяцев вместо 20 лет, а перегрузка на 50% приводит в негодность провода в течение нескольких часов.
Основными причинами перегрузки являются:
- несоответствие сечения проводников рабочему току (например, когда электропроводка к звонку выполняется телефонным проводом);
- параллельное включение в сеть не предусмотренных расчетом токоприемников без увеличения сечения проводников (например, подключение удлинителя с 3-4 розетками в одну рабочую);
- попадание на проводники токов утечки, молнии;
- повышение температуры окружающей среды.
Кроме того, при перегрузке электросети приборы и аппараты, подключенные к ней, постоянно испытывают нехватку тока, что может привести к их аварийному выходу из строя.

Коротким замыканием (КЗ) называется всякое замыкание между проводами, или между проводом и землей (под "землей" здесь понимается любое токопроводящее изделие, отличное от провода, в т.ч. и тело человека). Причиной возникновения КЗ является нарушение изоляции в электрических проводах и кабелях, машинах и аппаратах, которое вызывается: перенапряжениями; старением изоляции; механическими повреждениями изоляции; прямыми ударами молнии. При возникновении КЗ в цепи ее общее сопротивление уменьшается, что приводит к увеличению токов в ее ветвях по сравнению с токами нормального режима.
Опасность КЗ заключается в увеличении в сотни тысяч ампер силы тока, что приводит к выделению в самый незначительный промежуток времени большого количества тепла в проводниках, а это вызывает резкое повышение температуры и воспламенение изоляции, расплавление материала проводника с выбросом искр, способных вызвать пожар горючих материалов (температура плавления алюминия составляет 600°С, меди -1200°С). Внезапное снижение напряжения при КЗ негативно сказывается на работе электрооборудования и может привести к пожару за много метров от места КЗ.

При перегрузке электропроводок также возникает аварийный режим. Из-за неправильного выбора, включения или повреждения потребителей суммарный ток, проходящий в проводах, превышает номинальное значение, т. е. происходит повышение плотности тока (перегрузка). Например, при прохождении тока в 40 А через последовательно соединенные три куска провода одинаковой длины, но различного сечения — 10; 4 и 1 мм2 плотность его будет различна: 4, 10 и 40 А/мм2. В последнем куске самая высокая плотность тока, и соответственно, самые высокие потери мощности. Провод сечением 10 мм2 слегка нагреется, температура провода сечением 4 мм2 достигнет допустимой, а изоляция провода сечением 1 мм2 просто сгорит.