Термоядролық реакциялар

Термоядролық реакция, термоядролық синтез - миллиондаған градус температурада жүзеге асатын ядролық бірігу реакциясы деп аталады.

Жеңіл элементтерді (сутек, гелий, литий, т. б.) жүздеген миллион градусқа дейін қыздырғанда, олардың бейтарап атомдары тұтастығын жойып, ядролар мен электрондарға ыдырайды.

Нәтижесінде оң зарядты ядролардан, теріс зарядты электрондардан тұратын ерекше орта — жоғарғы температуралық плазма пайда болады. Мұндай плазмада ядролар кулондық тебіліс бөгетін (барьерін) жеңе алатын кинетикалық энергияға ие болады:

мұндағы k—Больцман тұрақтысы; Т—плазманың температурасы; m және v — бөлшектің массасы мен жылдамдығы.

Температурасы жүздеген миллион градус болатын ыстық плазмадағы ядролар аса үлкен жылдамдықпен бір-біріне жақындап, ядролық күштердің әрекет аймағына енеді. Сол сәтте-ақ тегеурінді ядролық күш оларды біріктіріп, жаңа ядроны түзеді. Бұл кезде пайда болған m масса ақауы есебінен аса мол энергия босап шығады.

Жер бетінде алғаш рет термоядролық реакциялар 1950 жылдардың басында Қазақстанда (Семей полигоны) сутек бомбасын жару арқылы жүзеге асырылды. Қажетті жоғары температура атом бомбасын алдын ала жару үстінде алынды. Термоядролық бомбаның ішіне жоғары температура алу үшін атом бомбасының заряды және жеткілікті мөлшерде сутек изотоптары (мысалы, дейтерий) орналастырылады. Термоядролық жарылыста әуелі атом бомбасының заряды іске қосылады да, температура миллиондаған градусқа көтеріліп, сутек изотоптарының ядролары жаппай біріге бастайды. Осылайша әп-сәтте атом бомбасының жарылысы сутек бомбасының жарылысына ұласады.

Қолдан басқарылатын термоядролық реакцияларды іске асыру зор қиындықтарға кезікті. Оларды жүзеге асыру үшін, негізінен, үш мәселені шешу керек.

Біріншіден, сутек газын қыздыру арқылы ыстық плазманың температурасын ондаған миллион градусқа көтеру қажет.

Екіншіден, термоядролық реакцияны тұтандыру үшін ыстық плазманы суытпай, белгілі бір көлемде кем дегенде 10-1-10~2 с ұстап тұру қажет.

Үшіншіден, термоядролық реакция қарқынды жүріп, энергия шығыны қажетінше мол болуы үшін ыстық плазмадағы дейтерий ядроларының тығыздығы белгілі бір шамадан кем болмауы тиіс, яғни 1 м3 көлемде 1022 бөлшек болуы керек.

Осы үш шарт қатарынан орындалса ғана басқарылатын термоядролық реакцияны іске асыруға болады. Алайда плазма заттың ең орнықсыз күйі болып табылады, сондықтан бұл шарттарды бір мезгілде орындау мәселесі әлі күнге шешуін таппай отыр

45.Шредингер теңдеуі, толқындық теңдеу – релятивистік емес кванттық механиканың негізгі теңдеуі. Мұны алғаш рет Э.Шредингер тапты (1926). Ньютонның механикадағы қозғалыс теңдеулері мен Максвелл электрдинамикадағы теңдеулері классик. физикада қандай түбегейлі рөл атқарса, Шредингер теңдеуі кванттық механикада сондай рөл атқарады. Шредингер теңдеуі толқындық функция (пси функция) арқылы кванттық нысандар күйінің уақыт бойынша өзгеруін сипаттайды. Егер бастапқы кездегі толқындық функцияның мәні 0 белгілі болса, онда Шредингер теңдеуін шешу арқылы осы функцияның кез келген уақыт мезетіндегі мәнін (x, y, z, t) табуға болады. V(x, y, z, t) потенциалы тудыратын күштің әсерінен қозғалатын, массасы m бөлшек үшін Шредингер т. мына түрде жазылады: , мұндағы d2/dx2+d2/dy2+d2/dz2 Лаплас операторы, =h/2 – Планк тұрақтысы. Бұл теңдеу Шредингердің уақытқа тәуелді теңдеуі деп аталады. Егер V уақытқа тәуелсіз болса, онда Шредингер теңдеуі төмендегі түрде жазылады: , мұндағы Е-кванттық жүйенің толық энергиясы. Бұл теңдеу Шредингердің стационер күйдегі теңдеуі деп аталады. Кеңістіктің шектелген аумағында қозғалатын кванттық жүйелер (бөлшектер) үлесі Шредингер теңдеуінің шешімі энергияның кейбір дискретті (үздікті) мәндерінде n1, n2, …, nn, … ғана болады; бұл қатардың мүшелері бүтін кванттық сандармен (n) нөмірленеді. Әрбір n-нің мәніне n (x, y, z) толқындық функциясы сәйкес келеді. Толқындық функцияның толық жиынтығы n1, n2, …, n, белгілі болса, кванттық жүйенің барлық параметрлерін анықтауға болады. Шредингер теңдеуі табиғаттағы микробөлшектердің бөлшектік-толқындық қасиеттерін матем. өрнек арқылы толық сипаттайды және ол сәйкестік принциптерін қанағаттандырады. Бұл теңдеу шекті жағдайда (де Бройль толқынының ұзындығы қарастырылып отырған қозғалыстың өлшемдерінен әжептәуір кіші болғанда) бөлшектердің қозғалысын классик. механика заңдарымен сипаттауға мүмкіндік береді. Шредингер теңдеуінен қозғалысты траектория арқылы сипаттайтын классик. механика теңдеулеріне ауысу толқындық оптикадан геометрик. оптикаға ауысуға ұқсас. Матем. көзқарас бойынша Шредингер теңдеуі толқындық теңдеуге жатады және өзінің құрылымы бойынша периодты әсер ететін жіңішке ішектің тербелісін сипаттайтын теңдеуге ұқсас. Бірақ ішектің тербелісін сипаттайтын теңдеудің шешімі берілген уақыт мерзіміндегі ішектің геометр. пішінін беретін болса, ал Шредингер теңдеуі шешімінің тікелей физикалық мағынасы болмайды. Дегенмен толқындық функция квадратының n(x, y, z, t)/2 физикалық мағынасы бар. Ол бөлшектің температурасы ӘС уақыт мезетіндегі координаттары x, y, z, нүктенің төңірегінде бірлік көлемде болу ықтималдылығын анықтайды. Ықтималдықтарды қосу теоремасына сүйеніп микробөлшекті температурасы ӘС уақыт кезеңінде шекті V көлемде мына өрнек арқылы табуға болады: мұндағы W – микробөлшектің V көлемде орналасу ықтималдылығы.

· 46. Сутегіге ұқсас атомдар спектрінің сериялық формулалары: , мұндағы - спектралды сызық толқынының ұзындығы, - Ридберг тұрақтысы, - элементтің реттік нөмірі, ,

47.Атом ядросы — протондар мен нейтрондардан (нуклондардан) құралатын атомның ең ауыр, орталық бөлігі. Атом ядросының негізгі сипаттамаларының бірі оның электр заряды болып табылады. Атом ядросының зарядын алғаш рет 1913 жылы Г.Мозлиөлшеген. Ал ядроның зарядын тікелей өлшеуді ағылшын физигі Дж.Чедвик 1920 жылы жүзеге асырды. Атом ядросының заряды элементар электр зарядының Менделеев кестесіндегі химиялық элементтің реттік нөміріне көбейтіндісіне тең болады:

.

Сонымен, Менделеев кестесіндегі химиялық элементтің реттік нөмірі кез келген элемент атомының ядросындағы оң зарядтардың санымен анықталады. Сондықтан элементтің реттік нөмірін зарядтық caн деп атайды.[1]

Атом ядросының массасы [өңдеу]

Атом ядросының физикалық қасиеттері оның зарядымен қатар массасымен де анықталады. Ядроны сипаттайтын шамалардың ең маңыздыларының бірі — масса. Ядролық физика иондар мен атом ядросының массасын көбінесе масс-спектрографтың көмегімен анықтайды.

Атом ядросының пішіні мен өлшемі [өңдеу]

Көптеген эксперименттік зерттеулер атом ядросының пішіні сфера тәрізді болатынын көрсетті. Атом ядросының радиусын мына формула бойынша жуықтап анықтауға болады:

мұндағы R0 = 1,25 = 1,25 · 10-15 м, A — массалық сан. Ал ядроның радиусы оның массалық санының кубтық түбіріне пропорционалдығынан ядролық заттың орташа тығыздығы үшін

шығады, мұндағы Мя = (mр + mn) · А — ядроның массасы. Есептеулер жуықтап алғанда ядролық заттың орташа тығыздығы р ~ 2,7 · 1017 кг/м3 - екенін көрсетті. Заттың осындайтығыздығы ғарыштағы нейтрондық жұлдыздар-пульсарларға да тән көрінеді.[

Атом құрылысы - 1897 жылы көптеген электр құбылыстарын түсiндiруге мүмкiндiк беретiн жаңалық ашылды. Ағылшын ғалымы Дж. Дж. Томсон элементар заряд тасымалдаушысы болып табылатын бөлшектi тапты. Бұл бөлшекті электрон деп атады.

Атом құрылысы

Резерфорд атомының құрылысын Күн жүйесiне ұқсатты. Күн жүйесiндегi планеталар оған тартылып айналғаны сияқты, электрондар да ядроғатартылып оны айнала қозғалады. Осындай ұқсастығы үшiн Резерфорд ұсынған модельдi планетарлық модель деп атаған. Ядро мен электронның ара қашықтығы олардың өлшемдерiне қарағанда өте үлкен. Егер атомды ойша үлкейткенде ядроның диаметрi он теңгелiктей болса, онда ядро мен электрон ара қашықтығы шамамен бiр километрдей болар едi. Егер барлық электрондар атомдық ядроларға тығыз орналасса, онда ересек адамның денесiнiң көлемi бiр куб миллиметрдiң миллионнан бiр бөлiгiндей болатындығы есептелген. Бұдан адам денесiнiң 99%-ын (кез-келген дененiң) бостық жайлайтындығын көремiз. Бiр тектi атомдар жиынтығы химиялық элемент деп аталады. Әр түрлi химиялық элементтердiң атомдары бiр-бiрiнен ядроларының зарядымен және сол ядроны айнала қозғалатын электрондар санымен ерекшеленедi. Мысалы, сутегi атомында жалғыз электрон бар, оттегi атомында – сегiз электрон, ал уран атомында – тоқсан екi. Атомдағы электрондар саны элементтiң Д.И. Менделеевкестесіндегі реттiк нөмiрiмен сәйкес келедi. Осы нөмiр атом ядросының зарядын да анықтайды

Басты фактілер

· Атом ортасында оң зарядталған ядродан және оның қабықшасын құрайтын, орасан зор жылдамдықпен қозғалатын электрондардан тұрады

· Элементар электр заряды е=-1,6*10-19 Кл. Электронның массасы m =9,1 * 10-31 кг

· Ядроның құрамына оң зарядталған бөлшек протон және нейтрон деп аталатын бейтарап бөлшек кіреді

· Ядродағы нейтрондардың саны протондардың санына тең

· Ядроның заряды оң және абсолют мәні бойынша атомдағы барлық электрондардың зарядына тең

· Оң ион-кандай да бір өзара эрекеггесу нәтижесінде электрондарынан айрылған атом

· Теріс ион - қандай да бір өзара әрекеттесу нәтижесінде артық электрондарды қосып алған атом

· Атомның өлшемі өте кіші 10-10 м

· Атом ядросының өлшемі (10-14 м ), атомнан он мың есе кіші.

48.Тасымалдау Құбылыстары – физикалық жүйеде электр заряды, масса, импульс, энергия, энтропияның, т.б. физикалық шамалардың кеңістікте тасымалдануы (бөлінуі) арқылы өтетін кинетикалық процестер. Бұл бөлінулер заттың тұтас жүйе ретінде “таза” мех. қозғалысымен де, эл.-магн. күштердің әсерінен де және заттың құрамындағы микробөлшектердің (газ және сұйықтың молекулалары, металл торының электрондары мен оң таңбалы иондары, электролиттің иондары, т.б.) жылулық қозғалысымен де байланысты болады. Жүйеге сыртқы электрөрісінің әсер етуі нәтижесінде, жүйе температурасының құрамының және жүйені құрайтын бөлшектердің (атом, молекула) орташа жылдамдығының кеңістіктік біртекті болмауы салдарынан да Тасымалдау Құбылыстары пайда болады. Физ. шамалардың тасымалдануы олардың градиентіне кері бағытта жүреді.

Тасымалдау Құбылыстары жүйені тепе-теңдік күйге жақындатады. Тасымалдау Құбылыстарына электрөткізгіштік (сыртқы электр өрісінің әсерінен электр зарядтарының тасымалдануы және айқас процестер), диффузия (концентрация градиентіне байланысты жүйенің бір бөлігінен екінші бөлігіне массаның тасымалдануы), жылуөткізгіштік (темп-ра градиенті нәтижесінде жылу энергиясының жүйенің бір бөлігінен екіншісіне тасымалдануы), т.б. құбылыстар жатады. Айқас процестер кезінде бір шаманың градиенті басқа шаманың тасымалдануына әкеледі. Мыс., термодиффузия немесе Соре эффектісі – темп-ра градиенті масса ағынын тудырады; керісінше концентрация градиенті есебінен жылу ағыны пайда болады (Дюфур эффектісі). Сыртқы магнит өрісі әсер етпейтін изотроптық жүйелерде термоэлектрлік эффектілер деп аталатын айқас құбылыстар байқалады: екі тізбектеп қосылған әр түрлі өткізгіштердің түрлі темп-радағы түйіндерінде электр тогы жоқ кезде электр қозғаушы күштің (ЭҚК) пайда болуы (Зеебек эффектісі); Пельте эффектісі – тұрақты температурадағы әр түрлі екі өткізгіштің түйіндерінен электр тогы өткенде жылудың бөлінуі немесе жұтылуы; Томсон эффектісі – тогы бар өткізгішті бойлай темп-ра градиенті болғанда жылудың бөлінуі немесе жұтылуы. Сыртқы магнит өрісі әсер ететін изотроптық жүйелерде гальваномагниттік және термомагниттік эффектілер болып саналатын айқас құбылыстар байқалады. Бұл құбылыстар электр тогының әсерінен туындаса оларды гальваномагниттік, ал жылу ағыны есебінен пайда болса термомагниттік деп атайды. Тасымалдау Құбылыстарын кинетик. теория зерттейді.

49. Барлық нақты сұйықтардың бір қабаты екінші қабатымен салыстырғанда орын ауыстырса, онда азды-көпті үйкеліс күші пайда болады. Шапшаңырақ қозғалатын қабат тарапынан жай қозғалатын қабатқа үдетуші күш әсер етеді. Керісінше, жай қозғалатын қабат тарапынан шапшаң қозғалатын қабатқа бөгеуші күш әсер етеді. Бұл күштер ішкі үйкеліс күштері деп аталады, олар қабаттардың бетіне жүргізілген жанама бойымен бағытталады.Ішкі үйкеліс күшінің шамасы сұйық ағысының v жылдамдығы бір қабаттан екінші қабатқа көшкенде қаншалықты шапшаң өзгеретіндігіне тәуелді және қарастырылып отырған сұйық қабаты бетінің S ауданы неғұрлым үлкен болса, соғұрлым зор болады. Мысалы, бірінен-бірі Δh қашықтықтағы сұйықтың екі қабаты v1 және v2 жылдамдықпен ақсын (v1- v2=Δv) делік. Қабаттардың Δh арақашықтығын өлшегенде бағыт сол қабаттардың ағыс жылдамдығына перпендикуляр болсын. Сонда Δv/Δh шамасы бір қабаттан екінші қабатқа көшкенде жылдамдықтың қаншалықты шапшаң өзгеретіндігін көрсетеді, оны жылдамдық градиенті деп атайды. Ньютон алғаш рет сұйықтың екі қабатының арасындағы үйкеліс күші жылдамдықтар айырымы мен жанасып тұрған сұйық қабаттары бетінің ауданына тура пропорционал және сол қабаттардың ара қашықтығына кері пропорционал екендігін дәлелдеді.

мұндағы η-пропорционал коэффициент, яғни сұйықтың тұтқырлық коэффициенті деп аталады.

50. Фотометриялық әдіс 5-нитрофуран туындыларының протофилді еріткіштегі (өзіне тән хлороформ тобы бар, боялған қосылыс ретінде) ерітінділерінің көрінетін облыстар спектрінің сіңіру жарығын өлшеуге негізделген. Кейде ионизациялануды жақсарту үшін спирт немесе негіздің сулы ертіндісін қосады.

51. Тармақталған тізбек үшін Кирхгоф ережелері

Біз қарастырған Ом заңдары тек қарапайым электр тізбегін есептеу үшін ғана жарамды. Ал күрделі тізбектегі токты анықтау керек болса, онда жалпыланған заңдылықтар болуы қажет. Сондықтан осындай заңдылықтың түріне заряд пен энергияның саталу заңының салдары ретінде неміс физигі Кирхгоф (1824-1887) ашқан заңдар немесе ережелер жатады.

Кирхгофтың бірінші ережесі түйіндерге қатысты оған келетін ток пен одан шығатын ток арасындағы байланысты қарастырады. Тармақталған тізбек деп аталатын тізбекте түйіндер үштен кем емес өткізгіштер тоғысатан кез келген нүктені атайды. Біз тұрақты токты қарастырғандықтан, түйінге қанша заряд ағып келсе, сонша ағып кетуі керек. Егер түйінге кіретін токтарды оң, ал шығатын токтарды теріс деп есептесек, онда мынадай ережені айтуға болады: түйінге тоғысатын ток күштерінің алгебралық қосындысы нөлге тең:

Жалпы түрде

Мұны былайша түсінуге болады. Егер түйіндегі токтардың алгебралық қосындысы нөлден өзгеше болса, түйінде зарядтар көбейіп не азайып кетер еді де, бұл өз кезегінде түйіндегі потенциалдың және тізбектен ағатын токтың өзгеруіне әкеп соғар еді. Кирхгофтың екінші ережесін жалпы түрде энергияның сақталу заңына сүйеніп, тармақталған тізбек үшін Ом заңын қорытындылау арқылы түсіндіруге болады. Тұйықталған жүйені құрайтын әрбір қосылғыштар энергияларының өзгерістерінің қосындысы нөлге тең:

Сондықтан тұйық тізбек үшін қатысы орындалады. Бұдан кернеудің түсуі екенін ескерсек:

(3.26)

Сонымен Кирхгофтың екінші ережесі бойынша кез келген тұйық контур үшін э.қ.к-нің алгебралық қосындысы ток күшінің кедергіге көбейтіндісінің алгебралық қөосындысына тең.

Кирхгофтың бірінші және екінші ережелеріне сәйкес құрылған тәуелсіз теңдеулердің саны тармақталған тізбектерден өтетін әр түрлі токтардың санына тең болады. Сондықтан э.қ.к-і және барлық тармақталған бөліктердің кедергілері берілсе, онда барлық токты есептеуге болады.

52.Элементар бөлшектер – заттың ең ұсақ және ішкі құрылымы ең қарапайым деп есептелетін бөлшектері.

Толығырақ [өңдеу]

Элементар бөлшектердің қасиеттері мен құрылымын зерттеу – қазіргі физиканың негізгі мәселелерінің бірі. Қазіргі кезде антибөлшектерді қосқанда 200-ге жуық элементар бөлшек белгілі болып отыр. Солардың ішінен атомдар құрамына кіретін электрон, протон және нейтрон ғана. Протон мен нейтрондардан атом ядросы, ал электрондардан атомның электрондық қабықтары түзіледі. Қалған Элементар бөлшектер әдетте секундтың өте аз үлесіндей уақыт қана өмір сүреді. Элементар бөлшектер зат атомдарымен әсерлесуі нәтижесінде электрондар мен протондарға түрленеді. Электрон, позитрон, протон, антипротон, нейтрино, антинейтрино және фотоннан басқа бөлшектердің барлығы өздігінен ыдырайды. Э. б-дің пайда болу мезеті мен ыдырау мезетінің арасындағы уақыт (тұрақсыз Э. б-дің өмір сүру уақыты деп аталатын) әдетте секундтың миллиондық және миллиардтық үлесіндей болады.

Табиғаттағы тұрақсыз Элементар бөлшектер ғарыштық сәулелерде (ғарыштағы үдей қозғалған протондар мен электрондардың атмосферадағы бөлшектерді соққылау кезінде) пайда болады. Алайда ғарыштық сәулелердегі тұрақсыз Элементар бөлшектердің қасиеттерін дәлірек зерттеу қиынырақ. Өйткені олардың қарқындылығы өте аз. Сондықтан одан гөрі зарядты бөлшектер үдеткішінде алынған Элементар бөлшектер шоғын зерттеу қолайлы. Үдеткіште жылдамдатылған протондардың не электрондардың энергиясы неғұрлым жоғары болған сайын ауыр, тұрақсыз Элементар бөлшектер алынады. Қазіргі кезде үдеткіштер бөлшектердің энергиясын 70 ГэВ-ке дейін жеткізе алады.

Элементар бөлшектердің мөлшері өте кішкентай (мыс., протонның мөлшері шамамен 10–13 см) болғандықтан, оларды ешқандай оптик. прибордың көмегімен көруге болмайды. Физиктер Элементар бөлшектер жөніндегі деректерді Элементар бөлшектердің зат арқылы өтуі кезінде пайда болған құбылыстарды зерттеу нәтижесінде алады. Мұндай құбылыстарға қозғалған бөлшектердің фотоэмульсиядағы (қ. Қалың қабатты фотопластинка әдісі) не арнаулы прибордағы (мыс., Вильсон камерасы, Көпіршікті камера, т.б.) іздері, Элементар бөлшектердің Черенков – Вавилов сәуле шығаруы, Элементар бөлшектер өткен кезде арнаулы санауыштарда пайда болатын разрядтар жатады.

Элементар бөлшектерді зерттеу саласында соңғы уақытта ірі табыстарға қол жетті. Элементар бөлшектердің құрылымы әзірше айқындалмаса да оларды нағыз элементар деп айтуға болмайды. Элементар бөлшектердің күрделі болатындығы олардың бір-бірімен әсерлесетіндігіне байланысты. Элементар бөлшектер бір-бірімен әсерлесе отырып басқа бір Элементар бөлшектерге түрленеді. Осы түрлену кезінде энергияның, импульстың және қозғалыс мөлшерінің заңдары, сондай-ақ арнаулы заңдар да (мыс, электр зарядының сақталу заңы, ғажаптылықтың сақталу заңы) орындалады.

Элементар бөлшектердің фотоннан басқасы лептондар, мезондар және бариондар деп аталатын үш топқа бөлінеді. Әр топтың өздеріне тән кванттық сандары болады. Э. б. гравитац. өзара әсерден басқа – күшті, эл.-магн. және әлсіз өзара әсерге қатысады. Әрбір элементар бөлшектің антибөлшегі бар. Бөлшек пен антибөлшек жұбының қарапайым мысалына электрон мен позитрон жатады. Өзара әсерлесудің әр түріне сәйкес өзінің симметриясы болады. 20 ғ-дың 60-жылдары барлық белгілі Э. б. құ-ралады деп жорамалданатын және адрондардың күшті өзара әсеріне қатысатын – кварктер теориясы жасалды (американ физигі М.Гелл-Ман, австрия физигі Г.Цвейг). Кварктердің болатындығы әзірше іс жүзінде дәлелденген жоқ.