Точки разрыва первого и второго рода

Нечётные функции

Нечётная степень где — произвольное целое число.

· Синус .

· Тангенс .

·

Чётные функции

Чётная степень где — произвольное целое число.

· Косинус .

· Абсолютная величина (модуль) .

Периодическая функция функция, повторяющая свои значения через некоторый регулярный интервал аргумента, то есть не меняющая своего значения при добавлении к аргументу некоторого фиксированного ненулевого числа (периода функции) на всей области определения.

· Говоря более формально, функция называется периодической, если существует такое число T0 (период), что на всей области определения функции выполняется равенство .

· Исходя из определения, для периодической функции справедливо также равенство , где - любое целое число.

· Все тригонометрические функции являются периодическими.

3) Нули (корни) функции — точки, где она обращается в ноль.

Нахождение точки пересечения графика с осью Oy. Для этого нужно вычислить значение f(0). Найти также точки пересечения графика с осью Ox, для чего найти корни уравнения f(x) = 0 (или убедиться в отсутствии корней).

Точки, в которых график пересекает ось , называют нулями функции. Чтобы найти нули функции нужно решить уравнение , то есть найти те значения «икс», при которых функция обращается в ноль.

4) Промежутки постоянства знаков, знаки в них.

Промежутки, где функция f(x) сохраняет знак.

Интервал знакопостоянства – это интервал, в каждой точке которого функция положительна либо отрицательна.

ВЫШЕ оси абсцисс.

НИЖЕ оси .

5) Непрерывность (точки разрыва, характер разрыва, ассимптоты).

Непрерывная функция — функция без «скачков», то есть такая, у которой малые изменения аргумента приводят к малым изменениям значения функции.

Устранимые точки разрыва

Если предел функции существует, но функция не определена в этой точке, либо предел не совпадает со значением функции в данной точке:

,

то точка называется точкой устранимого разрыва функции (в комплексном анализе —устранимая особая точка).

Если «поправить» функцию в точке устранимого разрыва и положить , то получится функция, непрерывная в данной точке. Такая операция над функцией называется доопределением функции до непрерывной или доопределением функции по непрерывности, что и обосновывает название точки, как точки устранимого разрыва.

Точки разрыва первого и второго рода

Если функция имеет разрыв в данной точке (то есть предел функции в данной точке отсутствует или не совпадает со значением функции в данной точке), то для числовых функций возникает два возможных варианта, связанных с существованием у числовых функций односторонних пределов:

· если оба односторонних предела существуют и конечны, то такую точку называют точкой разрыва первого рода. Точки устранимого разрыва являются точками разрыва первого рода;

· если хотя бы один из односторонних пределов не существует или не является конечной величиной, то такую точку называют точкой разрыва второго рода.

Асимптота — прямая, обладающая тем свойством, что расстояние от точки кривой до этой прямой стремится к нулю при удалении точки вдоль ветви вбесконечность.

Вертикальная

Вертикальная асимптота — прямая вида при условии существования предела .

Как правило, при определении вертикальной асимптоты ищут не один предел, а два односторонних (левый и правый). Это делается с целью определить, как функция ведёт себя по мере приближения к вертикальной асимптоте с разных сторон. Например:

1.

2.

Горизонтальная

Горизонтальная асимптота — прямая вида при условии существования предела

.

Наклонная

Наклонная асимптота — прямая вида при условии существования пределов

1.

2.

Замечание: функция может иметь не более двух наклонных (горизонтальных) асимптот.

Замечание: если хотя бы один из двух упомянутых выше пределов не существует (или равен ), то наклонной асимптоты при (или ) не существует.

если в п. 2.), то , и предел находится по формуле горизонтальной асимптоты, .

6) Нахождение промежутков монотонности.Найти интервалы монотонности функции f(x)(то есть интервалы возрастания и убывания). Это делается с помощью исследования знака производной f (x). Для этого находят производную f (x) и решают неравенство f (x) 0. На промежутках, где это неравенство выполнено, функция f(x)возрастает. Там, где выполнено обратное неравенство f (x) 0, функция f(x)убывает.

Нахождение локального экстремума.Найдя интервалы монотонности, мы можем сразу определить точки локального экстремума там, где возрастание сменяется убыванием, располагаются локальные максимумы, а там, где убывание сменяется возрастанием - локальные минимумы. Вычислить значение функции в этих точках. Если функция имеет критические точки, не являющиеся точками локального экстремума, то полезно вычислить значение функции и в этих точках.

Нахождение наибольшего и наименьшего значений функции y = f(x) на отрезке [a; b](продолжение)

1.Найти производную функции: f (x). 2.Найти точки, в которых производная равна нулю: f (x)=0 x1, x2,... 3.Определить принадлежность точек х1, х2,отрезку [a; b]: пусть x1 a;b , а x2 a;b . 4.Найти значения функции в выбранных точках и на концах отрезка:f(x1), f(x2),..., f(xa),f(xb), 5.Выбор наибольшего и наименьшего значений функции из найденных. Замечание. Если на отрезке [a; b] имеются точки разрыва, то необходимо в них вычислить односторонние пределы, а затем их значения учесть в выборе наибольшего и наименьшего значений функции.

 

7) Нахождение интервалов выпуклости и вогнутости. Это делается с помощью исследования знака второй производной f (x). Найти точки перегиба на стыках интервалов выпуклости и вогнутости. Вычислить значение функции в точках перегиба. Если функция имеет другие точки непрерывности (кроме точек перегиба), в которых вторая производная равна 0 либо не существует, то в этих точках также полезно вычислить значение функции. Найдя f (x) , мы решаем неравенство f (x) 0. На каждом из интервалов решения функция будет выпуклой вниз. Решая обратное неравенство f (x) 0, мы находим интервалы, на которых функция выпукла вверх (то есть вогнута). Определяем точки перегиба как те точки, в которых функция меняет направление выпуклости (и непрерывна).

Точка перегиба функции — это точка, в которой функция непрерывна и при переходе через которую функция меняет направление выпуклости.

Условия существования

Необходимое условие существования точки перегиба: если функция дважды дифференцируемая в некоторой выколотой окрестности точки , то или .