И грузоподъемности автосамосвалов 1 страница

ОТКРЫТАЯ ГЕОТЕХНОЛОГИЯ

 

Учебно-методическое пособие

 

 

В.Н. ВОКИН В.Н. МОРОЗОВ

Е.Ю.НАЗАРОВА М.Ю. КАДЕРОВ

 

 

Красноярск

СФУ


УДК 622.27 (07)

ББК 33.131я73

Рецензенты: доктор технических наук, заведующий лабораторией «Проблем освоения недр» Института химии и химической технологии СО РАН А.Г. Михайлов, доктор технических наук, заведующий кафедрой «Разработка месторождений полезных ископаемых Иркутского государственного технического университета В.П. Федорко.

Вокин В.Н., Морозов В.Н., Назарова Е.Ю, Кадеров М.Ю.

Открытая геотехнология: Учебно-методическое пособие. – Красноярск, 2012. - 157 с.

В учебно-методическом пособии приведена характеристика основных элементов горнопромышленного комплекса. Дана характеристика горных пород как объекта разработки. Изложены основные вопросы технологии и механизации открытого способа добычи полезных ископаемых, рассмотрены технологические процессы на карьерах, способы вскрытия и применяемые системы разработки месторождений полезных ископаемых. Дана методика расчета практических работ по основным производственным процессам, технологии и проектированию технологических комплексов разработки месторождений полезных ископаемых. Для студентов, обучающихся по специальностям «Шахтное и подземное строительство», «Электрификация и автоматизация горного производства», «Обогащение полезных ископаемых», «Подземная разработка месторождений полезных ископаемых», «Экономика и управление на предприятии металлургии», «Экономика и управление на предприятии горной промышленности», «Экономика и управление на предприятии природопользования».

УДК 622.27 (07)

ББК 33.131я73

© Сибирский федеральный

университет, 2012


ОГЛАВЛЕНИЕ

ПРЕДИСЛОВИЕ

1. ОСНОВНЫЕ ЭЛЕМЕНТЫ ГОРНОПРОМЫШЛЕННОГО КОМПЛЕКСА

1.1. ГОРНЫЕ ПОРОДЫ И ПОЛЕЗНЫЕ ИСКОПАЕМЫЕ

1.2. СВОЙСТВА ГОРНЫХ ПОРОД, ВЛИЯЮЩИЕ НА ЭФФЕКТИВНОСТЬ ИХ РАЗРАБОТКИ

1.3. ГЕОЛОГИЧЕСКИЕ ОБЪЕКТЫ ГОРНЫХ РАБОТ

1.4. СПОСОБЫ РАЗРАБОТКИ МЕСТОРОЖДЕНИЙ ПОЛЕЗНЫХ ИСКОПАЕМЫХ

2. ОСНОВЫ ОТКРЫТОЙ РАЗРАБОТКИ МЕСТОРОЖДЕНИЙ ПОЛЕЗНЫХ ИСКОПАЕМЫХ

2.1. ОБЩИЕ СВЕДЕНИЯ О ТЕХНОЛОГИИ ОТКРЫТЫХ ГОРНЫХ РАБОТ

2.2. ОСНОВНЫЕ ПОНЯТИЯ, ЭЛЕМЕНТЫ И ПАРАМЕТРЫ КАРЬЕРА

2.3. ПРОИЗВОДСТВЕННЫЕ ПРОЦЕССЫ

2.3.1. Подготовка горных пород к выемке

2.3.2. Выемочно-погрузочные работы

2.3.3. Перемещение горной массы

2.3.4. Отвалообразование вскрышных пород

2.4. ВСКРЫТИЕ МЕСТОРОЖДЕНИЙ

2.5. СИСТЕМЫ ОТКРЫТОЙ РАЗРАБОТКИ И СТРУКТУРА КОМПЛЕКСНОЙ МЕХАНИЗАЦИИ

3. практические работы

СПИСОК ЛИТЕРАТУРЫ

ПРИЛОЖЕНИЯ


ПРЕДИСЛОВИЕ

 

Горное дело относится к одному из основных видов человеческой деятельности, обеспечивающих существование и уровень развития цивилизации. Горное дело как область промышленного производства охватывает разведку месторождений полезных ископаемых, их разработку, первичную переработку добываемого минерального сырья, строительство горных предприятий и подземных сооружений различного назначения.

Горнодобывающая промышленность как составная часть горного дела имеет целью добычу и первичное обогащение полезных ископаемых. Она поставляет минеральное топливо (уголь, горючие сланцы, торф, нефть, природный газ), руды черных, цветных, редких и радиоактивных металлов, горно-химическое сырье, строительные материалы и др. Ее мировое производство, по экспертным оценкам, составляет 160–180 млрд. т горной массы. Ежегодно из недр земли добывается 8 млрд. т энергетического сырья, руд для производства 570 млн. т черных металлов, 170 млн. т цветных металлов, 620 млн. т индустриального минерального сырья.

Развитая горнодобывающая промышленность играет большое значение в экономике государства, определяет его самостоятельность и обороноспособность. Российская Федерация располагает запасами всех видов минерального сырья. Развитие горной промышленности является следствием научно-технического прогресса. Усилиями многих российский ученых решен ряд важнейших проблем в области подземной и открытой разработки месторождений полезных ископаемых, создания современной техники, улучшения условий труда, а также в области подготовки специалистов для горной промышленности. К ним относятся М.И. Агошков, А.И. Арсентьев, А.А. Борисов, А.П. Зотов, П.Э. Зурков, А.И. Ксенофонтова, Е.Ф. Шешко, Н.В. Мельников, Н.М. Покровский, М.М. Протодьяконов, В.В. Ржевский и многие другие.

Дисциплина «Открытая геотехнология» является одной из первых дисциплин, формирующих профиль подготовки инженеров по направлению «Горное дело». Задачей ее изучения является получение знаний об основных принципах добычи различных полезных ископаемых открытым способом.

Цели изучения дисциплины:

-овладение горной терминологией и комплексом понятии, формирующих область деятельности человека при освоении земных недр;

-освоение принципов ведения и обеспечения горных работ;

-освоение принципов современной технологии добычи твердых полезных ископаемых;

-приобретение студентами навыков самостоятельного решения различного рода горных задач, выполняемых на практических занятиях.

Изучение дисциплины базируется на основе знаний отдельных дисциплин гуманитарного, социально-экономического, естественного и общетехнического цикла. Основными из них являются: геология, история горного дела, начертательная геометрия, экология, обеспечение жизнедеятельности и др. В свою очередь, «Открытая готехнология» являются базой для изучения общетехнических и специальных дисциплин направления.

В ходе практических занятий, основная часть времени уделяется для вычисления параметров и показателей производственных процессов, получению навыков выполнения горных чертежей, подготавливая тем самым студентов к выполнению курсовых проектов и разделов дипломного проектирования.

 

 


1. ОСНОВНЫЕ ЭЛЕМЕНТЫ ГОРНОПРОМЫШЛЕННОГО КОМПЛЕКСА

 

1.1. ГОРНЫЕ ПОРОДЫ И ПОЛЕЗНЫЕ ИСКОПАЕМЫЕ

 

Разработка недр Земли – основа экономической деятельности человечества. И не случайно она нашла отражение в периодизации древней истории, где эпохи различаются не по тому, что производится, а по тому, чем и как производится, какими орудиями труда это достигается и из какого материала эти орудия сделаны.

В течение почти двух миллионов лет основным орудием труда человека служил камень. В конце каменного века (4 – 3 тыс. до н. э.) человек постепенно перешел к использованию меди, золота. В 3 – 2 тыс. до н.. э. была освоена плавка меди и ее сплава – бронзы. В середине 2 тыс. до н. э. на смену бронзе пришло железо.

Горное дело зародилось, по сути, вместе с человеческим обществом и, пока существует на Земле человек, оно не перестанет играть выдающуюся роль. Наряду со строительством и производством продуктов питания горное дело – одна из первооснов существования человечества.

Об огромном значении горного дела убедительно писали многие мыслители прошлого. Один из своих научных трудов посвятил горному делу передовой ученый XVI века Георгий Агрикола. О значении металлов писал Михаил Ломоносов: «Металлы подают укрепление и красоту важнейшим вещам, в обществе потребным, ими защищаются от нападения неприятельского, ими утверждаются корабли, и силою их связаны, между бурными вихрями в морской пучине безопасно плавают. Металлы отверзают недро земное к плодородию, металлы служат нам в ловлении земных и морских животных для пропитания нашего. И, кратко сказать, ни едино художество, ни едино ремесло простое употребление металлов миновать не может».

В настоящее время значение добычи минерального сырья всем очевидно. В нашей стране этому вопросу уделяется огромное внимание, так как состояние горной промышленности и размеры добычи полезных ископаемых определяют могущество и богатство страны.

 

Рисунок 1.1 – Строение Земли Рисунок 1.2 – Химический состав земной коры

В недрах нашей планеты сформировано огромное количество минеральных ресурсов. Твердая оболочка Земли мощностью в несколько десятков километров является потенциальной сферой добычи полезных ископаемых (рисуок 1).

Земля окаймлена тремя оболочками: атмосферой, гидросферой и литосферой. Литосферу также называют земной корой. Земная кора состоит в основном из 12 химических элементов, в ней 49, 4% - кислорода, 25,8 % - кремния, 7,5% - алюминия, 4,7% - железа, 3,4 % - кальция, 2,6 % - натрия, 2,4 % - калия, 1,9 % - магния, 0,9 – водорода, 0,6 % титана, остальные элементы в незначительном количестве (рисунок 1.2).

Кристаллические химические соединения элементов, слагающие земную кору, называют минералами. Ассоциации минералов образуют горные породы. Изучением минералов занимается минералогия, горных пород - петрография, задача петрографии - исследование породообразующих минералов.

Выделяют три основные группы горных пород: изверженные (магматические), осадочные и метаморфические. Изверженные породы формируются при охлаждении и кристаллизации расплавов (магмы), поднимающихся с больших глубин. Излияние магмы на поверхность происходит при извержении вулканов. Значительная часть расплавов кристаллизуется внутри земной коры.

Осадочные горные породы образуются в морях, озерах и реках как продукты разрушения и переотложения ранее существовавших горных пород.

Метаморфические горные породы формируются в результате преобразования изверженных и осадочных гор­ных пород, когда на них оказывают воздействие высокие температура и давление.

Земная кора на 95% состоит из изверженных горных пород, представленных преимущественно гранитами. На континентах на глубине 15 - 30 км граниты образуют сплошной слой. В 100 т гранитных пород содержится в среднем 8 т алюминия, 5 т железа, 540 кг титана, 80 кг марганца, 30 кг хрома, 18 кг никеля, 9 кг меди, 4,5 кг фольфрама, 1,8 кг свинца.

Осадочные горные породы залегают на поверхности нашей планеты. К ним приурочены такие полезные ископаемые, как нефть, газ, уголь, соли. Таким образом, земная кора является минерально-сырьевой базой человечества.

Для обеспечения современного уровня жизни в индустриально развитых странах необходимо добывать из недр ежегодно на одного человека около 18т минерального сырья, в том числе 8-10т нерудных строительных материалов, 2,5т угля, 0,5т металлов.

В настоящее время темпы добычи минерального сырья также превышают темпы роста населения. Мировое потребление минерального сырья увеличивается в последнее время на 5% в год. Потребляемая обществом энергия на 90% производится за счет тепла, получаемого при сгорании нефти, угля и газа.

Какие же горные породы считаются полезными ископаемыми? Обычно это природные минеральные вещества, которые при данном уровне техники и технологии могут быть использованы в народном хозяйстве либо в естественном виде, либо после той или иной переработки.

Породы, имеющие полезные ископаемые, заключенные в их толще в виде прослоев, прожилков и не используемые в народном хозяйстве, считают пустыми породами. Деление горных пород на полезные ископаемые и пустые породы является относительным.

Полезные ископаемые могут находиться в земной коре в твердом, жидком или газообразном состоянии. Локальное скопление природного минерального сырья называется рудным телом или залежью полезного ископаемого. Рудные тела весьма разнообразны: это пласты, линзы, жилы, штоки, отдельные гнезда, вкрапленные руды и т. д. В большинстве случаев рудные тела после образования подвергались тектоническим воздействиям, поэтому пласты смяты в складки, линзы и жилы пересечены трещинами, заполненными другими породами, нарушены сдвигами земной коры.

Месторождения могут быть коренными, залегающими в толще земной коры на месте своего образования и россыпными. Россыпные месторождения образовались в процессе физического выветривания коренных горных пород и химического воздействия на них различных факторов.

Различают полезные ископаемые металлические (рудные) – сырье для производства черных, цветных, благородных, редких и радиоактивных металлов; неметаллические – сырье для металлургической (доломит, магнезит и др.), химической (сера, бор, фосфориты и др.) и других отраслей промышленности; горючие (уголь, горючие сланцы, торф и др.); строительные горные породы (граниты, мраморы, гравий, глины и др.).

Совокупность свойств, определяющих степень пригодности и экономической эффективности использования, называют качеством полезного ископаемого. Одни качественные свойства относят к полезным (например, теплоту сгорания угля, содержание извлекаемых металлов для руд), другие – к вредным, (например, зольность угля, высокую влажность, содержание примесей, затрудняющих плавку руд).

Качество полезных ископаемых в недрах оценивается кондициями, которые устанавливаются на стадии разведки, проектирования и эксплуатации месторождения.

Отклонение от кондиций при горных работах оценивается потерями и разубоживанием.

Потери характеризуют уменьшение объема кондиционного полезного ископаемого вследствие оставления в недрах, отнесения к пустым породам, просыпания при погрузке и транспортировании и по другим причинам.

Разубоживание характеризует степень промешивания к кондиционному полезному ископаемому при ведении горных работ пустой породы или некондиционных сортов полезного ископаемого.

Месторождение будет промышленным, если его разработка целесообразна в данных экономических и географических условиях при современном уровне техники. В противном случае его считают непромышленным.

Массу или объем минерального сырья, заключенного в недрах на определенной площади, считают запасами полезных ископаемых. По народнохозяйственному значению выделяют запасы: балансовые, использование которых экономически целесообразно, и забалансовые, которые могут явиться объектом промышленного освоения, но использовать их в настоящее время экономически невыгодно. К промышленным относят часть балансовых запасов, за исключением проектных потерь.

Проектные потери – это часть балансовых запасов, проектируемая к безвозвратному оставлению в недрах.

 

1.2. СВОЙСТВА ГОРНЫХ ПОРОД, ВЛИЯЮЩИЕ НА ЭФФЕТИВНОСТЬ ИХ РАЗРАБОТКИ

 

Изучение различных свойств пород, разработка методики их определения и учета имеют большое значение для выбора типа применяемого горного оборудования, рационального способа отбойки породы, установления норм на выполнение буровых и взрывных работах и т. д.

При бурении и взрывании эффективность разрушения горных пород определяется различными свойствами. Это связано с тем, что при бурении зона разрушения под лезвием инструмента имеет небольшие размеры и зависит от микросвойств горных пород: твердости, прочности, абразивности, зернистости, вязкости и т.д.

При взрывании на карьерах и подземной разработке месторождений эффективность дробления массива зависит от прочности пород на сжатие и сдвиг, а также степени пористости и трещиноватости, прочности и разрушаемости отдельностей, слагающих массив при соударении и их плотности.

Твердость и абразивность влияют, главным образом, на износ инструмента при бурении и выбор величин осевого усилия на буровой инструмент и частоты его вращения.

К числу наиболее важных свойств горных пород в массиве относятся крепость, твердость, вязкость, устойчивость, трещиноватость и др.

Крепость характеризует способность пород сопротивляться разрушению под действием внешних воздействий.

Свойства горных пород изменяются в очень большом диапазоне. Трудно найти на разных участках месторождения хотя бы две по минералогическому составу породы с одинаковыми свойствами. Поэтому принято их объединять в виды, группы, категории и классы с определенным диапазоном свойств. Наибольшее распространение получила классификация горных пород по крепости, предложенная
проф. М.М. Протодьяконовым, в основу которой положен коэффициент крепости f, который характеризует прочность горных пород на раздавливание при одноосном сжатии. Принято, что порода с прочностью на раздавливание 100 кгс/см2 (9,8·106 Н/м2) или 10 МПа имеет коэффициент крепости, равный единице, т.е. f = σсж/100 (где σсж – прочность породы при сжатии).

Проф. М.М. Протодьяконов считал, что коэффициент крепости характеризует породу во всех производственных процессах, т.е. если данная порода крепче другой в некоторое количество раз, например при бурении, то она, как правило. В столько же раз крепче ее при других производственных процессах, например, при взрывании.

По классификации (шкале) М.М. Протодьяконова все горные породы делятся на 10 основных категорий с коэффициентом крепости от 0,3 до 20. Очень крепкие и в высшей степени крепкие породы имеют
f = 15–20 (кварциты, крепкие граниты); крепкие и довольно крепкие –
f = 5–10 (песчаники, известняки); средней крепости (глинистые сланцы, плотный мергель); мягкие – f = 1–2 (уголь, глинистый грунт, гипс, каменная соль).

Твердость горной породы характеризуется сопротивлением проникновению в нее другого тела, не получающего при этом остаточной деформации. Ф. Моос (1773–1839) предложил метод определения твердости минерала путем царапания его минералами-эталонами. Эталонами твердости в минералогии приняты десять минералов, расположенных в порядке возрастания твердости и образующих шкалу твердости (шкалу Мооса), по которой можно определить относительную твердость минерала. В шкале твердости каждый предыдущий минерал чертится минералом последующим, более твердым: 1 – тальк,
2 – гипс, 3 – кальцит, 4 – флюорит, 5 – апатит, 6 – ортоклаз, 7 – кварц, 8 – топаз, 9 – корунд, 10 – алмаз.

Прочность – это свойство горных пород сопротивляться разрушению под действием напряжений, возникающих от нагрузок, влияния температуры, атмосферных осадков и других факторов.

Академиком В.В. Ржевским все горные породы разделены на три вида:

- скальные и полускальные породы (в естественном состоянии);

- разрушенные породы (искусственно или естественно измененные породы первого вида);

- плотные, мягкие (связные) и сыпучие горные породы.

К скальным породам относится большинство изверженных и метаморфических, а также часть осадочных пород с пределом прочности на одноосное сжатие более 50 МПа (f , более 5).

К полускальным породам относятся выветрелые изверженные, метаморфические и осадочные породы с пределом прочности на одноосное сжатие от 20 МПа до 50 МПа (f = 2–5).

В результате искусственного или естественного разрушающего воздействия скальные и полускальные породы переходят в разрушенное состояние. Разрушенные породы различают по степени связности и кусковатости. Степень связности характеризуется величиной разрыхления.

Разрыхляемость – свойство горных пород занимать больший объем в разрушенном состоянии по сравнению с объемом в массиве или целике. Отношение объема разрыхленной породы к ее первоначальному объему называют коэффициентом разрыхления. Наибольшим коэффициентом разрыхления характеризуются твердые, вязкие и абразивные породы (таблица 1.1).

Таблица 1.1. Значение коэффициента разрыхления пород

Породы Коэффициент разрыхления
первоначальный в вагоне остаточный
Песок, супесь 1,05–1,2 1,1–1,2 1,01–1,05
Почвенно-растительный грунт 1,2–1,3 1,2–1,25 1,01–1,03
Глина, суглинок, щебень 1,25–1,35 1,3 1,07–1,15
Трещиноватые скальные породы 1,3–1,5 1,4 1,1–1,25
Скальные породы при содержании кусков размером 0,4–0,7 м до 25% 1,25–1,5 1,3–1,4 1,15–1,35
Скальные породы при содержании кусков размером 1 м до 25% 1,45–1,55 1,4 1,2–1,4
Скальные породы при содержании кусков размером 1,7 м до 40% 1,6–1,8 1,6–1,8 1,4–1,6

 

К плотным, мягким и сыпучим породам относятся связные породы, мягкие связные породы, разрыхленные мягкие породы, мерзлые мягкие и сыпучие породы с пределом прочности на одноосное сжатие до 0 МПа (f до 2).

Абразивность – способность или свойство горных пород изнашивать при трении о нее металлы, твердые сплавы и другие тела.

Пластичность – свойство пород необратимо изменять, не разрушаясь, свою форму и размеры под действием внешних сил.

Хрупкость – свойство пород разрушаться без пластических деформа­ций. При бурении и взрывании скальные горные породы можно рассматривать как хрупкие тела. Наибольшую пластичность имеет глина. Для разрушения пластичных пород требуется увеличенный расход ВВ.

Вязкостью в горном деле принято характеризовать сопротивляемость породы силам, стремящимся отделить ее часть от массива. С увеличением вязкости пород эффективность процессов бурения и взрывания снижается.

Зернистость характеризуется крупностью зерен минералов, образующих породы. Различают крупнозернистые породы с зернами. диаметром больше 5 мм, среднезернистые – с зернами диаметром 1–5 мм и мелкозернистые с зернами диаметром мене 1 мм. Чем меньше зерна минералов и чем прочнее цементирующие зерна вещества, тем труднее разрушается порода.

Пористость характеризуется наличием мельчайших замкнутых пустот в горной породе.

Водоносность – свойство пород задерживать воду и выделять ее при разработке месторождения (бурении скважин, проведении траншей и т.д.). Водоносность пород следует учитывать при выборе типа ВВ для заряжания скважин.

Плотностью породы называют массу ее единицы объема в естественном состоянии.

Устойчивость – свойство открытой поверхности горных пород сохранять свое положение не разрушаясь (обрушаясь). Этот показатель обычно характеризуется на открытых горных работа углом естественного откоса, т.е. углом, при котором откос породы находится в устойчивом состоянии. Величина его для разных пород меняется от 20о до 80о. Особенно важное значение приобретает устойчивость при разработке глубоких горизонтов карьера (ниже 300 м), а также при выводе бортов карьера на проектный контур: чем круче и устойчивее откосы уступов, тем меньший объем вскрышных пород надо извлечь при добыче проектного объема полезных ископаемых.

Устойчивость пород при подземных горных работах (проходка выработок, отбойка руд) характеризуется величиной площади открытой поверхности в выработке или камере, которая сохраняется без обрушения.

Слоистость – свойство пород относительно легко разделяться по плоскостям наслоения. При ведении работ в слоистых породах шпуры и скважины следует располагать под углом 45о–90о к плоскостям наслоения, так как это улучшает эффективность взрыва и уменьшает вероятность искривления шпуров и скважин, особенно когда прослойки имеют разную прочность.

Трещиноватость характеризуется частотой и пространственным расположением трещин в массиве горной породы, которыми он разделен на отдельности различных размеров. Монолитных, т.е. не имеющих трещин, пород при открытой разработке месторождений полезных ископаемых практически не встречается.

Естественная трещиноватость горной породы определяется геологической характеристикой месторождения, т.е. ее генезисом и последующими тектоническими процессами, дополняется искусственной, зависящей от ведения взрывных работ. Она образуется в результате многократного сейсмического воздействия взрыва на массив, расположенный вне разрушаемого объема. С увеличением величины и диаметра заряда искусственная (техногенная) трещиноватость массива и степень раскрытия трещин возрастают.

Трещиноватость влияет на кусковатость взорванной горной массы при массовых взрывах и проходке выработок, их оконтуривание, на выход негабарита. Одни и те же по составу породы при интенсивной трещиноватости разрушаются, не образуя негабарита, и, наоборот, при слабой трещиноватости дают большой выход негабарита, худшее оконтуривание сечения.

Поэтому при выборе методов ведения взрывных работ и установлении допустимого размера куска, проектировании паспортов буровзрывных работ при проходке для предприятия необходимо учитывать трещиноватость пород.

Трещиноватость массива характеризуется удельной трещиноватостью: числом открытых трещин всех систем, приходящихся на единицу длины прямой, проведенной в произвольном направлении. Величина, обратная удельной трещиноватости, дает среднее расстояние между трещинами, которое численно принимают равным среднему диаметру естественной отдельности.

Содержание крупных или мелких отдельностей в массиве до взрыва обычно выражается в процентах к его объему.

Средний объем крупных отдельностей, слагающих массив, зависит от типа трещиноватости массива: чем больше содержание в массиве крупных отдельностей, тем больше их средний объем. Все породы по степени трещиноватости или содержанию в массиве крупных отдельностей условно разделены на пять категорий (таблица 1.2).

 

Таблица 1.2. Временная классификация пород по трещиноватости
межведомственной комиссии по взрывному делу

Категория пород Степень трещиноватости (блочности) пород Среднее расстояние между трещинами, м Удельная трещиноватость, м-1 Содержание (%) в массиве отдельностей размером, см
I Чрезвычайно трещиноватые (мелкоблочные) До 0,1 Более 10 До 10 ≈ 0
II Сильнотрещиноватые (среднеблочные) 0,1–0,5 2–10 10–70 До 30 До 5
III Среднетрещиноватые (крупноблочные) 0,5–1 1–2 70–100 30-80 5-40
IV Малотрещиноватые (весьма крупноблочные) 1–1,5 0,65–1 80-100 40-100
V Практически монолитные (исключительно крупноблочные) Более 1,5 Менее 0,65

 

1.3. ГЕОЛОГИЧЕСКИЕ ОБЪЕКТЫ ГОРНЫХ РАБОТ

 

Объектами горных работ являются разнообразные горные породы. Горные породы делят на коренные и наносы. Коренными (магматические, метаморфические и осадочные) породами называют такие, которые залегают в толще земной коры на месте своего первоначального образования. Наносами называют рыхлые породы, образовавшиеся в результате разрушения коренных пород, отдельные частицы которых остались на месте или переносились на то или иное расстояние водой, льдом или ветром.

Большое теоретическое и практическое значение имеют форма и условия залегания месторождений полезных ископаемых.

По форме залегания месторождений твердых полезных ископаемых подразделяются на правильные и неправильные.

К правильным относятся пласты (рисунок 1.3) и пластообразные залежи. Пластом называется плитообразная залежь, имеющая значительное распространение в земной коре и ограниченная двумя более или менее параллельными плоскостями. Весьма тонкие пласты, не разрабатываемые вследствие малой мощности (до 0,4 м), называются прослойками. Плоскости соприкосновения пластов отдельных пород называются плоскостями напластования.

Породы, залегающие над пластом полезного ископаемого, называются кровлей или висячим боком, залегающие ниже пласта – почвой или лежачим боком. Часть пласта, выходящая на земную поверхность или находящаяся неглубоко от нее под наносами, называется выходом пласта (под наносы).

Правильную форму залегания обычно имеют месторождения полезных ископаемых осадочного происхождения (уголь, горючие сланцы, различные соли, гипс, марганцевые руды и т.п.).

К неправильным месторождениям относятся жилы, штоки, линзы столбы, гнезда (рисунок 1.4). Неправильную форму залегания имеют, как правило, рудные месторождения магматического происхождения.

Жилой (схема а) называется заполненная минеральным веществом трещина в земной коре. Шток (схема б) – большие тела с весьма неправильными очертаниями. Линза (схема в) –округленные или овальные тела с уменьшением толщины к краям. Столб (схема г) –залежь, вытянутая в одном направлении. Гнезда (схема д) –скопления различных размеров и неправильной формы, неравномерно распределенных во вмещающих породах.