Сильный антропный принцип: Вселенная должна иметь свойства, позволяющие развиться разумной жизни.

При скрещивании двух гомозиготных организмов, относящихся к разным чистым линиям и отличающихся друг от друга по одной паре альтернативных проявлений признака, всё первое поколение гибридов (F1) окажется единообразным и будет нести проявление признака одного из родителей

Этот закон также известен как «закон доминирования признаков». Его формулировка основывается на понятии чистой линии относительно исследуемого признака — на современном языке это означает гомозиготность особей по этому признаку. Мендель же формулировал чистоту признака как отсутствие проявлений противоположных признаков у всех потомков в нескольких поколениях данной особи при самоопылении.

2 закон.Закон расщепления, или второй закон Менделя: при скрещивании двух гетерозиготных потомков первого поколения между собой во втором поколении наблюдается расщепление в определенном числовом отношении: по фенотипу 3:1, по генотипу 1:2:1.

Скрещиванием организмов двух чистых линий, различающихся по проявлениям одного изучаемого признака, за которые отвечают аллели одного гена, называетсямоногибридное скрещивание

.

Явление, при котором скрещивание гетерозиготных особей приводит к образованию потомства, часть которого несёт доминантный признак, а часть — рецессивный, называется расщеплением. Следовательно, расщепление — это распределение доминантных и рецессивных признаков среди потомства в определённом числовом соотношении. Рецессивный признак у гибридов первого поколения не исчезает, а только подавляется и проявляется во втором гибридном поколении.

Закон. Определение

Закон независимого наследования (третий закон Менделя) — при скрещивании двух гомозиготных особей, отличающихся друг от друга по двум (и более) парам альтернативных признаков, гены и соответствующие им признаки наследуются независимо друг от друга и комбинируются во всех возможных сочетаниях (как и при моногибридном скрещивании). Когда скрещивались растения, отличающиеся по нескольким признакам, таким как белые и пурпурные цветы и желтые или зелёные горошины, наследование каждого из признаков следовало первым двум законам и в потомстве они комбинировались таким образом, как будто их наследование происходило независимо друг от друга. Первое поколение после скрещивания обладало доминантным фенотипом по всем признакам. Во втором поколении наблюдалось расщепление фенотипов по формуле 9:3:3:1, то есть 9:16 были с пурпурными цветами и желтыми горошинами, 3:16 с белыми цветами и желтыми горошинами, 3:16 с пурпурными цветами и зелёными горошинами, 1:16 с белыми цветами и зелёными горошинами.

При скрещивании чистых линий гороха с пурпурными цветками и гороха с белыми цветками Мендель заметил, что взошедшие потомки растений были все с пурпурными цветками, среди них не было ни одного белого. Мендель не раз повторял опыт, использовал другие признаки. Если он скрещивал горох с жёлтыми и зелёными семенами, у всех потомков семена были жёлтыми. Если он скрещивал горох с гладкими и морщинистыми семенами, у потомства были гладкие семена. Потомство от высоких и низких растений было высоким. Итак, гибриды первого поколения всегда единообразны по данному признаку и приобретают признак одного из родителей. Этот признак (более сильный, доминантный), всегда подавлял другой (рецессивный).

“Доминантный” ген способен вызвать свой эффект даже в гаплоидном (единственном) числе, поскольку он сильнее рецессивного аллеля (гена, находящегося в том же месте парной – гомологичной – хромосомы). Когда признак определяется рецессивным геном, для фенотипического проявления этого признака (или дефекта ) необходимо диплоидное число хромосом (оба аллеля или гена в одном и том же локусе на паре хромосом).

Рецессивные признаки включают прямые, светлые или рыжие волосы; облысение у женщин; голубые или серые глаза; отсутствие пигментации кожи ( альбинизм ); нормальные пальцы; восприимчивость к яду сумаха (Rhus radicans); куриную и цветовую слепоту; глухонемоту; отрицательный резус-фактор; гемофилию и группу крови 0 (по системе AB0).

65. Наследственная изменчивость обусловлена возникновением разных типов мутаций и их комбинаций в последующих скрещиваниях.[1]

В каждой достаточно длительно существующей совокупности особей спонтанно и ненаправленно возникают различные мутации, которые в дальнейшем комбинируются более или менее случайно с разными уже имеющимися в совокупности наследственными свойствами.

Изменчивость, обусловленную возникновением мутаций, называют мутационной, а обусловленную дальнейшим перекомбинированием генов в результате скрещивания — комбинационной.

Комбинативная изменчивость

Комбинативная изменчивость — изменчивость, которая возникает вследствие рекомбинации генов во время слияния гамет. Основные причины:

§ независимое расхождение хромосом во время мейоза;

§ случайная встреча половых гамет, а вследствие этого и сочетания хромосом во время оплодотворения;

§ рекомбинация генов вследствие кроссинговера.

[править]Мутационная изменчивость

Мутационная изменчивость — изменчивость, вызванная действием на организм мутагенов, вследствие чего возникают мутации (реорганизация репродуктивных структур клетки). Мутагены бывают физические (радиационное излучение), химические (гербициды) и биологические (вирусы).

Основные положения мутационной теории разработаны Гуго де Фризом в 1901—1903 гг. и сводятся к следующему:

1. Мутации возникают внезапно, скачкообразно, как дискретные изменения признаков.

2. В отличие от ненаследственных изменений мутации представляют собой качественные изменения, которые передаются из поколения в поколение.

3. Мутации проявляются по-разному и могут быть как полезными, так и вредными, как доминантными, так и рецессивными.

4. Вероятность обнаружения мутаций зависит от числа исследованных особей.

5. Сходные мутации могут возникать повторно.

6. Мутации ненаправленны (спонтанны), то есть мутировать может любой участок хромосомы, вызывая изменения как незначительных, так и жизненно важных признаков.

Почти любое изменение в структуре или количестве хромосом, при котором клетка сохраняет способность к самовоспроизведению, обусловливает наследственное изменение признаков организма. По характеру изменения генома, то есть совокупности генов, заключенных в гаплоидном наборе хромосом, различают генные, хромосомные и геномные мутации.

Роль в эволюции

На наследственной изменчивости основано всё разнообразие индивидуальных различий, которые включают:

§ Как резкие качественные различия, не связанные друг с другом переходными формами, так и чисто количественные различия, образующие непрерывные ряды, в которых близкие члены ряда могут отличаться друг от друга сколь угодно мало;

§ Как изменения отдельных признаков и свойств (независимая изменчивость), так и взаимосвязанные изменения ряда признаков (коррелятивная изменчивость);

§ Как изменения, имеющие приспособительное значение (адаптивная изменчивость), так и изменения «безразличные» или даже снижающие жизнеспособность их носителей (неадаптивная изменчивость).

Ненаследственная изменчивость способ заключается в использовании ненаследственной изменчивости, возникающей под влиянием физиологически активного соединения пара-аминобензойной кислоты (ПАБК), сильный модификационный эффект которого был открыт И.А. Рапопортом [10]. Им же открыт феномен активации и реактивации ферментов, подвергшихся воздействию ионизирующей радиации, под влиянием ПАБК [11] при ее вступлении в комплексы с ферментами. По-видимому, под влиянием активации ферментов, которые при действии ПАБК начинают работать более активно, повышается зимостойкость у озимой пшеницы [12], а также засухоустойчивость у ячменя [13] и у пшеницы [12]. Очевидно, здесь большую роль играет активация тех ферментов, у которых понижена активность в связи с неблагоприятными почвенно-климатическими условиями. Повышение устойчивости к неблагоприятным осенне-зимне-весенним периодам у озимой пшеницы выражается в том, что из-под снега она выходит, как правило, в хорошем состоянии. Она быстро отрастает, быстрее, чем в контрольных вариантах. Сохранность растений также выше, чем в контроле. Густота стеблестоя превышает контроль на 10–15%. Наблюдаются более высокая регенерационная способность и более высокая продуктивная кустистость. Повышение под влиянием ПАБК засухоустойчивости, по нашим наблюдениям, выражается в увеличении тургора растений [13]. Как и в случае наследственной изменчивости под влиянием химического мутагена, повышение адаптивных свойств под влиянием ПАБК приводит к стабилизации урожаев зерна в разные годы [12, 13]. Оба способа для повышения адаптивных свойств – наследственная изменчивость при применении метода химического мутагенеза и ненаследственная изменчивость при применении фенотипического активатора ферментативной активности ПАБК успешно нами используются. Однако механизмы действия этих двух систем разные. В то же время химические мутагены в определенных дозах также вызывают активацию ферментов и их реактивацию [14]. Механизмы влияния на адаптивные свойства химического мутагенеза, очевидно, более многообразны по сравнению с ПАБК.

66. Эволюционная теория Дарвина представляет собой целостное учение об историческом развитии органического мира. Она охватывает широкий круг проблем, важнейшими из которых являются доказательства эволюции, выявление движущих сил эволюции, определение путей и закономерностей эволюционного процесса и др.
Сущность эволюционного учения заключается в следующих основных положениях:

1. Все виды живых существ, населяющих Землю, никогда не были кем-то созданы.

2. Возникнув естественным путем, органические формы медленно и постепенно преобразовывались и совершенствовались в соответствии с окружающими условиями.

3. В основе преобразования видов в природе лежат такие свойства организмов, как наследственность и изменчивость, а также постоянно происходящий в природе естественный отбор. Естественный отбор осуществляется через сложное взаимодействие организмов друг с другом и с факторами неживой природы; эти взаимоотношения Дарвин назвал борьбой за существование.

4. Результатом эволюции является приспособленность организмов к условиям их обитания и многообразие видов в природе.

Ненаследственная изменчивость является определенной, поскольку, изменяя условия развития организмов, можно предвидеть направление изменчивости. В то же время, она является и групповой, поскольку вся группа особей, подвергаемая одинаковому изменению условия развития, изменяется в одном направлении. [В XX веке такую изменчивость долгое время называли модификационной.]

Например, если группу поросят одной породы выращивать в хороших условиях, то через полгода все они будут характеризоваться сходными чертами: большая масса (около 200 кг), удлиненное тело, укороченные конечности, слабо развитый шерстный покров, спокойное поведение, хороший аппетит. Если же группу поросят той же породы выращивать в плохих условиях, то взрослые особи также будут сходны между собой: низкий вес (около 50 кг), укороченное тело, удлиненные конечности, сильно развитый шерстный покров, злобный нрав, плохой аппетит.

Наследственная изменчивость прямо противоположна ненаследственной. Эта изменчивость неопределенная. Например, мы не можем заранее предсказать: когда и в каком стаде появится овца с резко укороченными конечностями. Наследственная изменчивость является индивидуальной: изменение признака наблюдается лишь у одной особи из многих. [В XX веке эту форму изменчивости долгое время называли мутационной.]

Ч. Дарвин противопоставлял наследственную изменчивость ненаследственной и считал, что к отбору приводит только наследственная изменчивость: «Ненаследственное изменение для нас несущественно».

Естественный отбор, или переживание наиболее приспособленных, представляет собой сохранение полезных индивидуальных различий или изменений и уничтожение вредных. Изменения, нейтральные по своей ценности (неполезные и невредные), не подвергаются действию отбора, а представляют непостоянный, колеблющийся элемент изменчивости. Разумеется, отдельные особи, обладающие каким-то новым полезным признаком, могут погибнуть, не оставив потомства, по чисто случайным причинам. Однако влияние случайных факторов уменьшается, если полезный признак появляется у большего числа особей данного вида - тогда возрастает вероятность того, что по крайней мере для части этих особей достоинства нового полезного признака сыграют свою роль в достижении успеха в борьбе за существование. Отсюда следует, что естественный отбор является фактором эволюционных изменений не для отдельных организмов, рассматриваемых изолированно друг от друга, но лишь для их совокупностей, т. е. популяций. Понимание этого вероятностного аспекта действия естественного отбора, эффективного только на достаточно больших выборках, и является важнейшим результатом популяционного подхода Дарвина, о котором мы уже упоминали выше. Естественный отбор мог быть открыт только при таком популяционном подходе, учитывающем количественную, вероятностную сущность эволюционных изменений. Естественный отбор сам по себе не вызывает изменчивости организмов, которая стимулируется изменениями внешних условий. Важнейшее место в теории естественного отбора занимает концепция борьбы за существование. Согласно Дарвину, борьба за существование является результатом тенденции любого вида организмов к безграничному размножению. Приведя многочисленные примеры невозможности выживания всего потомства у различных видов организмов, Дарвин заключает: "Так как производится более особей, чем может выжить, в каждом случае должна возникать борьба за существование либо между особями того же вида, либо между особями различных видов, либо с физическими условиями жизни". Термин "борьба за существование" (struggle for existence) не вполне точно соответствует тому значению, которое вкладывал в него сам Дарвин, предлагая понимать этот термин "в широком и метафорическом смысле". Во-первых, Дарвин включал в понятие "существование" не только жизнь данной особи, но и успех ее в оставлении потомства. Во-вторых, словом "борьба" обозначалась не столько борьба как таковая (т.е. как прямое столкновение), сколько конкуренция, часто происходящая в пассивной форме. В сущности, Дарвин понимал под борьбой за существование совокупность всех сложных взаимодействий между организмом и внешней средой, определяющих успех или неудачу данной особи, в ее выживании и оставлении потомства. Подчеркивая роль перенаселения как фактора, обусловливающего борьбу за существование, Дарвин сделал вывод, что наиболее ожесточенной должна быть внутривидовая борьба как конкуренция между особями одного вида, которые обладают сходными жизненными потребностями. Если, например, рассматривать модель взаимоотношений между видом-хищником и видом-жертвой (скажем, лисы и зайцы), то, по Дарвину, важнейшим фактором, определяющим отбор, будет для лис конкуренция между разными лисами, а для зайцев - между самими зайцами.

67. Синтетическая теория эволюции (СТЭ) — современная эволюционная теория, которая является синтезом различных дисциплин, прежде всего, генетики и дарвинизма. СТЭ также опирается на палеонтологию, систематику, молекулярную биологию и другие.

СИНТЕТИЧЕСКАЯ ТЕОРИЯ ЭВОЛЮЦИИ , сложившаяся в 30-х гг. 20 в. эволюционная теория, представляющая собой синтез лучших компонентов ранее предложенных теорий и основанная на представлениях о мутационном процессе и естественном отборе; иногда называется неодарвинистской теорией эволюции. Большинство концепций С. т. э. исходят из современных открытий генетики, в частности, генетики популяций, в принципе подтвердивших эволюционную теорию Ч. Дарвина (1859). С. т. э.— новый этап в развитии дарвинизма , важным результатом к-рого является разработка в 1937—42 гг. основных положений учения о микроэволюции Ф. Г. Добржанского, Н. В. Тимофеева-Ресовского, Дж. Хаксли, И. И. Шмальгаузена, Э. Майра, Дж. Симпсона и др. В дальнейшем исследования закономерностей микроэволюционного процесса расширились, и было сформулировано положение о принципиальном единстве механизмов микро- и макроэволюции. Термин “С. т. э.” предложил Дж. Хаксли (1942).

синтетическую теорию эволюции можно охарактеризовать как теорию органической эволюции путем естественного отбора признаков, детерминированных генетически.

Считают, что эволюционный акт состоялся, когда отбор сохранил генное сочетание, нетипичное для предшествующей истории вида. В итоге для осуществления эволюции необходимо наличие трёх процессов:

1. мутационного, генерирующего новые варианты генов с малым фенотипическим выражением;

2. рекомбинационного, создающего новые фенотипы особей;

3. селекционного, определяющего соответствие этих фенотипов данным условиям обитания или произрастания.

Все сторонники синтетической теории признают участие в эволюции трёх перечисленных факторов.

68. МИКРОЭВОЛЮЦИЯ(от греч. mikros -маленький и лат, evolutio — развёртывание ), элементарные эволюц. процессы, приводящие к возникновению различий между организмами и образованию новых видов. В отличие от макроэволюции (см. Эволюция ),процессы М. протекают на внутривидовом, внутри- и межпопуляционном уровнях в пределах ограниченных территорий и относительно коротких отрезков времени и поэтому доступны наблюдению и экспериментированию. М. — основа макроэволюции. В соответствии с учением о М., элементарной эволюц. структурой, в к-рой идут процессы видообразования, является популяция организмов. В качестве элементарного эволюц. явления выступает изменение генотипич. состава популяции, связанное с наследств. изменчивостью составляющих её организмов (см. Мутации ). В популяции действуют элементарные эволюц. факторы (мутационный процесс, популяционные волны, изоляция, естеств. отбор), что приводит к последоват. формированию разновидностей и новых видов. Учение о М.— совр. этап развития эволюц. теории на основе достижений популяционной генетики, молекулярной биологии, экологии и др. наук (см. Дарвинизм ). Образование новых сортов и пород в результате хоз. деятельности человека также является микроэволюц. процессом.

Макроэволюция органического мира — это процесс формирования крупных систематических единиц: из видов — новых родов, из родов — новых семейств и т. д. В основе макроэволюции лежат те же движущие силы, что и в основе микроэволюции: наследственность, изменчивость, естественный отбор и репродуктивная изоляция. Так же, как и микроэволюция, макроэволюция имеет дивергентный характер. Понятие макроэволюции интерпретировалось многократно, но окончательного и однозначного понимания не достигнуто. Согласно одной из версий, макроэволюция — изменения системного характера, соответственно, огромных промежутков времени они не требуют. Процессы макроэволюции требуют огромных промежутков времени и непосредственно изучать её в большинстве случаев не представляется возможным. Одно из исключений — наблюдаемое ускоренное формирование новых надвидовых таксонов моллюсков в условиях гибели Аральского моря[1].

Факторов эволюции — изменчивости и наследственности, естественного отбора, скрещивания и изоляции, в процессе эволюции в значительной мере обусловлено различным пониманием последней.

Наследственность — это свойство организмов повторять в ряду поколений сходные типы обмена веществ и индивидуального развития в целом. Эволюция организмов происходит посредством изменения наследственных признаков организма. Примером наследственного признака у человека может служить коричневый цвет глаз, унаследованный от одного из родителей.[8] Наследственные признаки контролируются генами. Совокупность всех генов организма образует его генотип.[9]

Изменчивость складывается из мутаций, потока генов и рекомбинации генетического материала. Изменчивость также увеличивается за счет обменов генами между разными видами, таких как горизонтальный перенос генов у бактерий,[13]гибридизация у растений.[14] Несмотря на постоянные увеличение изменчивости за счет этих процессов, большая часть генома идентична у всех представителей данного вида.[15] Однако даже сравнительно небольшие изменения в генотипе могут вызвать огромные различия в фенотипе, например, геномы шимпанзе и людей различаются всего на 5 %[16]

Мутация

Мутации — изменения в последовательности ДНК. Они вызваны радиацией, вирусами,транспозонами, мутагенными веществами, а также ошибками происходящими во время репликации ДНК или мейоза.[17][18][19] Мутации могут не иметь никакого эффекта, могут изменять продукт гена или препятствовать его функционированию.

Рекомбинация позволяет наследоваться независимо даже аллелям, которые находятся близко друг от друга в ДНК. Однако, уровень рекомбинации низок — примерно две рекомбинации на хромосому за поколение. В результате гены находящиеся рядом на хромосоме имеют тенденцию наследоваться сцепленно. Это тенденция измеряется тем как часто две аллели находятся вместе на одной хромосоме и носит название неравновесного сцепления генов.[44] Несколько аллелей, которые, наследуются вместе, обычно называют гаплотипом. Если одна аллель в гаплотипе дает значительное преимущество, то в результате естественного отбора частота в популяции других аллелей этого гаплотипа также может повыситься. Это явление называется genetic hitchhiking (англ.)русск. («передвижение автостопом»).[45]

Поток генов

Основная статья: Поток генов

Потоком генов называют перенос аллелей генов между популяциями. Поток генов может осуществляться за счет миграций особей между популяциями в случае подвижных организмов, либо, например, с помощью переноса пыльцы илисемян в случае растений. Скорость потока генов сильно зависит от подвижности организмов.[51]

Степень влияние потока генов на изменчивость в популяциях до конца не ясна. Существуют две точки зрения, одна из них, что поток генов может иметь значительное влияние на крупных популяционных системах, гомогенизируя их и, соответственно, действую против процессов видообразования; вторая, что скорости потока генов достаточно, только для воздействия на локальные популяции.[51][52]

Изоляция как биологический термин обозначает разобщение особей или групп особей друг от друга. Снижая уровень панмиксии[8], изоляция приводит к увеличению доли близкородственных скрещиваний. Препятствуя снижению межпопуляционных генотипических различий, изоляция является необходимым условием сохранения, закрепления и распространения в популяциях генотипов повышенной жизнеспособности. В зависимости от природы факторов ограничения панмиксии различают географическую, биологическую и генетическую изоляцию.
Географическая изоляция заключается в пространственном разобщении популяций благодаря особенностям ландшафта в пределах ареала вида — наличию водных преград для «сухопутных» организмов, участков суши для видов-гидробионтов, чередованию возвышенных участков и равнин. Ей способствует малоподвижный или неподвижный (у растений) образ жизни.
Биологическая изоляция возникает вследствие внутривидовых различий организмов и имеет несколько форм. К экологической изоляцииприводят особенности окраски покровов или состава пищи, размножение в разные сезоны, у паразитов — использование в качестве хозяина организмов разных видов. Длительная экологическая изоляция способствует дивергенции популяций вплоть до образования новых видов. Так, предполагают, что человеческая и свиная аскариды, морфологически очень близкие, произошли от общего предка. Их расхождению, согласно одной из гипотез, способствовал запрет на употребление человеком в пищу свиного мяса, который по религиозным соображениям распространялся длительное время на значительные массы людей.
Этологическая (поведенческая) изоляция существует благодаря особенностям ритуала ухаживания, окраски, запахов, «пения» самок и самцов из разных популяций.
При физической (механической) изоляции препятствием к скрещиванию являются различия в структуре органов размножения или просто разница в размерах тела. У растений такая форма изоляции возникает при приспособлении цветка к определенному виду опылителей.
Описанные формы изоляции, особенно в начальный период их действия, снижают, но не исключают полностью межпопуляционные скрещивания.
Генетическая (репродуктивная) изоляция создает более жесткие, иногда непреодолимые барьеры скрещиваниям. Она заключается в несовместимости гамет, гибели зигот непосредственно после оплодотворения, стерильности или малой жизнеспособности гибридов[9].

Скрещивание, гибридизация, один из методов селекции растений и животных. Применяется для получения гибридов и помесей (метисов), представляющих исходный материал для отбора и подбора по хозяйственно-полезным признакам, и выведения новых пород (сортов). Существуют различные системы С., которое принято делить на родственное С. (инбридинг) и неродственное (аутбридинг). Разновидностями аутбридинга являются: межпородное (межсортовое) С. (кроссбридинг), межлинейные С. (инкроссинг — С. инбредированных линий одной породы, сорта; инкросс-бридинг — С. инбредированных линий разных пород, сортов; топкросс — С. специальных отселекционированных инбредных мужских линий с аутбредными им женскими линиями) и более отдалённые С.

Антро́пный при́нцип — аргумент «Мы видим Вселенную такой, потому что только в такой вселенной мог возникнуть наблюдатель, человек». Этот принцип был предложен с целью объяснить, с научной точки зрения, почему в наблюдаемой нами Вселенной имеет место ряд нетривиальных соотношений между фундаментальными физическими параметрами, которые необходимы для существования разумной жизни.

Часто выделяют сильный и слабый антропные принципы.[1]

Слабый антропный принцип: во Вселенной встречаются разные значения мировых констант, но наблюдение некоторых их значений более вероятно, поскольку в регионах, где величины принимают эти значения, выше вероятность возникновения наблюдателя. Другими словами, значения мировых констант, резко отличные от наших, не наблюдаются, потому что там, где они есть, нет наблюдателей. Слабый антропный принцип просто утверждает, что устройство Вселенной допускает зарождение в ней биологической жизни. То есть, вопрос «почему Вселенная устроена именно так, как она устроена?» заменяется вопросом «Почему Вселенная устроена так, что в ней возникли разумные существа, задающиеся вопросом о причинах наблюдаемого устройства Вселенной?» То есть, сам факт возникновения вопроса относительно природы фундаментальных сил и законов уже подразумевает, что во Вселенной развились разумные формы жизни. Если бы, условно говоря, константы (такие, как постоянная всемирного тяготения) отличались от наблюдаемых, Вселенная эволюционировала бы по-иному, жизнь в ней попросту могла бы и не развиться, в результате чего вопросов о первопричинах возникновения Вселенной не возникло бы, как таковых.

Сильный антропный принцип: Вселенная должна иметь свойства, позволяющие развиться разумной жизни.

Вариантом сильного АП является АПУ (Антропный принцип участия), сформулированный в 1983 году Джоном Уилером[2] [3]: некоторым ученым показалось мало для объяснения наблюдаемой пригодности нашей Вселенной для жизни, в результате чего был сформулирован сильный антропный принцип: Вселенная обязана быть устроена так, чтобы в ней могла зародиться разумная жизнь. В этой его версии принцип выходит за рамки слабого антропного принципа и утверждает, что зарождение жизни во Вселенной не только возможно (слабый принцип), но и фактически неизбежно. Сторонники этого взгляда на вещи обосновывают свою точку зрения тем, что имеется некий универсальный (и до сих пор не открытый) закон, согласно которому все фундаментальные вселенские константы попросту не могут отличаться от тех, которые мы имеем в объективной реальности. Крайняя точка зрения в этой космогонической традиции доходит до того, что не только универсальные константы предопределены, но и развитие сознающего разума во Вселенной неизбежно.

75.Фундамента́льные взаимоде́йствия — качественно различающиеся типы взаимодействия элементарных частиц и составленных из них тел.

На сегодня достоверно известно существование четырех фундаментальных взаимодействий:

гравитационного

§ электромагнитного

§ сильного

§ слабого

При этом электромагнитное и слабое взаимодействия являются проявлениями единого электрослабого взаимодействия.

Гравитация первым из четырех фундаментальных взаимодейст­вий стала предметом научного исследования. Созданная в ХVII в. ньютоновская теория гравитации (закон всемирного тяготения) по­зволила впервые осознать истинную роль гравитации как силы при­роды.
Гравитация обладает рядом особенностей, отличающих ее от дру­гих фундаментальных взаимодействий. Наиболее удивительной осо­бенностью гравитации является ее малая интенcивность. Гравитаци­онное взаимодействие в 1039 раз меньше силы взаимодействия элект­рических зарядов. Как может такое слабое взаимодействие оказать­ся господствующей силой во Вселенной?

Электромагнитизм. По величине электрические силы намного превосходят гравитаци­онные, поэтому в отличие от слабого гравитационного взаимодействия электрические силы, действующие между телами обычных разме­ров, можно легко наблюдать. Электромагнетизм известен людям с незапамятных времен (полярные сияния, вспышки молнии и др.

Слабое взаимодействие. К выявлению существования слабого взаимодействия физика про­двигалась медленно. Слабое взаимодействие ответственно за распа­ды частиц; и поэтому с его проявлением столкнулись с открытием радиоактивности и исследованием бета-распада.

Сильное взаимодействие. Последнее в ряду фундаментальных взаимодействий - сильное взаи­модействие, которое является источником огромной энергии. Наи­более характерный пример энергии, высвобождаемой сильным взаимодействием, - Солнце. В недрах Солнца и звезд непрерывно про­текают термоядерные реакции, вызываемые сильным взаимодействием. Но и человек научился высвобождать сильное взаимодействие: создана водородная бомба, сконструированы и совершенствуются технологии управляемой термоядерной реакции.

Фундамента́льные физи́ческие постоя́нные (вар.: конста́нта) — постоянные, входящие в уравнения, описывающие фундаментальные законы природы и свойства материи.[1] Фундаментальные физические постоянные возникают в теоретических моделях наблюдаемых явлений в виде универсальных коэффициентов в соответствующих математических выражениях.

Фундаментальные физические постоянные[2]

Величина Символ Значение Прим.
скорость света в вакууме 299 792 458 м·с−1 точно
характеристическое сопротивление вакуума 376,730 313 46177… Ω точно
гравитационная постоянная 6,674 28(67)×10−11 м3·кг−1·с−2 a
постоянная Планка (элементарный квант действия) 6,626 068 96(63)×10−34 Дж·с a
постоянная Планка (приведенная) 1,054 571 628(53)×10−34 Дж·с a
элементарный заряд 1,602 176 487(40)×10−19 Кл a
постоянная Больцмана 1,380 6504(24)×10−23 Дж·К−1 a
магнитная постоянная (по старой терминологии — магнитная проницаемость вакуума) μ0 Н·А−2 точно
  μ0 1,256 637 061 4359… ×10−6 Н·А−2  

75. Симме́три́я (др.-греч. συμμετρία «соразмерность», от μετρέω — «меряю»), в широком смысле — соответствие, неизменность (инвариантность), проявляемые при каких-либо изменениях,преобразованиях (например: положения, энергии, информации, другого). Так, например, сферическая симметрия тела означает, что вид тела не изменится, если его вращать в пространстве на произвольные углы (сохраняя одну точку на месте). Двусторонняя симметрия означает, что правая и левая сторона относительно какой-либо плоскости выглядят одинаково.

Симметрии в физике

Основная статья: Симметрия (физика)

В теоретической физике, поведение физической системы описывается некоторыми уравнениями. Если эти уравнения обладают какими-либо симметриями, то часто удаётся упростить их решение путём нахождения сохраняющихся величин (интегралов движения). Так, уже в классической механике формулируется теорема Нётер, которая каждому типу непрерывной симметрии сопоставляет сохраняющуюся величину. Из неё, например, следует, что инвариантность уравнений движения тела с течениемвремени приводит к закону сохранения энергии; инвариантность относительно сдвигов в пространстве — к закону сохранения импульса; инвариантность относительно вращений — к закону сохранения момента импульса.

 

Симметрии лежат в основе Вселенной. Они определяютсвойства окружающего нас мира, которые остаютсянеизменными, даже если эти свойства подвергаютсяразличного рода преобразованиям. Симметрией объектаявляются действия над ним, прикотором его внешний вид не изменяется. Чем большеразличных преобразований можно произвести надобъектом без изменений его внешнего вида, тем болеесимметричным он является. Шар более симметричен, чемкуб. Изменяются

Зако́ны сохране́ния — фундаментальные физические законы, согласно которым при определённых условиях некоторые измеримые физические величины, характеризующие замкнутую физическую систему, не изменяются с течением времени.

Зако́н сохране́ния эне́ргии — фундаментальный закон природы, установленный эмпирически и заключающийся в том, что для изолированной физической системы может быть введена скалярная физическая величина, являющаясяфункцией параметров системы и называемая энергией, которая сохраняется с течением времени. Поскольку закон сохранения энергии относится не к конкретным величинам и явлениям, а отражает общую, применимую везде и всегда, закономерность, то его можно именовать не законом, а принципом сохранения энергии.

Зако́н сохране́ния и́мпульса (Зако́н сохране́ния количества движения) утверждает, что векторная сумма импульсов всех тел (или частиц) замкнутой системы есть величина постоянная.

В классической механике закон сохранения импульса обычно выводится как следствие законов Ньютона. Из законов Ньютона можно показать, что при движении в пустом пространстве импульс сохраняется во времени, а при наличии взаимодействия скорость его изменения определяется суммой приложенных сил.

Как и любой из фундаментальных законов сохранения, закон сохранения импульса описывает одну из фундаментальных симметрий, — однородность пространства.

Закон сохранения массы — исторический закон физики, согласно которому масса как мера количества вещества сохраняется при всех природных процессах, то есть несотворима и неуничтожима. Вметафизической форме закон известен с древнейших времён. Позднее появилась количественная формулировка, где в качестве меры массы объекта вначале использовался его вес.

В настоящее время известен ряд условий, при которых данный закон нарушается — например, при радиоактивном распаде совокупная масса вещества уменьшается. В современной физике закон сохранения массы является частным случаем закона сохранения энергии, и он выполняется только в консервативных физических системах, то есть при отсутствии энергообмена с внешней средой.