Интегрирование рациональных функций.

Непосредственное интегрирование.

► Метод интегрирования, при котором интеграл путём тождественных преобразований подинтегральной функции (или выражения) и применения свойств неопределённого интеграла приводится к одному или нескольким табличным интегралам, называется непосредственным интегрированием.

2,Интегрирование путем подведения под знак интеграла и методом подстановки

Метод интегрирования подстановкой заключается во введении новой переменной интегрирования (то есть подстановки). При этом заданный интеграл приводится к новому интегралу, который является табличным или к нему сводящимся. Общих методов подбора подстановок не существует. Умение правильно определить подстановку приобретается практикой.

Пусть требуется вычислить интеграл Сделаем подстановку где — функция, имеющая непрерывную производную.

Тогда и на основании свойства инвариантности формулы интегрирования неопределенного интеграла получаем формулу интегрирования подстановкой:

► Преобразование дифференциала, приводящее данный интеграл к табличному интегралу, называется подведением под знак дифференциала. Это один из приёмов метода непосредственного интегрирования

Интегрирование по частям

Интегрирование по частям — применение следующей формулы для интегрирования:

Или:


В частности, с помощью n-кратного применения этой формулы находится интеграл

где — многочлен -й степени.

Интегрирование рациональных функций.

Неопределенный интеграл от любой рациональной дроби на всяком промежутке, на котором знаменатель дроби не обращается в ноль, существует и выражается через элементарные функции, а именно он является алгебраической суммой суперпозиции рациональных дробей, арктангенсов и рациональных логарифмов.

Сам метод заключается в разложении рациональной дроби на сумму простейших дробей.

Всякую правильную рациональную дробь , знаменатель которой разложен на множители

можно представить (и притом единственным образом) в виде следующей суммы простейших дробей:

где — некоторые действительные коэффициенты, обычно вычисляемые с помощью метода неопределённых коэффициентов.

5.Интегрирование тригонометрических функций.

Интегралы вида

находятся с помощью тригонометрических формул


2°. Интегралы вида

где m и n - четные числа находятся с помощью формул понижения степени

Если хотя бы одно из чисел m или n - нечетное, то полагают (пусть m = 2k + 1)

3°. Если m = -, n = - - целые отрицательные числа одинаковой четности, то

В частности, к этому случаю сводятся интегралы

4°. Интегралы вида

 

где R - рациональная функция от sinx и cosx, приводятся к интегралам от рациональных функций новой переменной с помощью подстановки

при этом

Если R{-sin x, cosx) = R(sinx, cosx), то целесообразно применить подстановку tgx = t. при этом


Здесь подынтегральная функция является рациональной функцией от sinx и cosx. Применяем подстановку

 

Подынтегральная функция не меняется от замены sinx на (-sinx), cosx на (-cosx), то есть R(-sinx,cosx) = R(sinx,cosx) . Применим подстановку tgx =

 

Основные тригонометрические функции

Функция Обозначение Соотношение
Си́нус
Ко́синус
Та́нгенс или
Кота́нгенс или
Се́канс
Косе́канс или
 

6.Вычисление определенного интеграла.

Определённым интегралом от непрерывной функции f(x) на конечном отрезке [a, b] (где ) называется приращение какой-нибудь её первообразной на этом отрезке. При этом употребляется запись

Числа a и b называются соответственно нижним и верхним пределами интегрирования, а отрезок [a, b] – отрезком интегрирования.

Таким образом, если F(x) – какая-нибудь первообразная функция для f(x), то, согласно определению,

(38)

При a = b по определению принимается

Равенство (38) называется формулой Ньютона-Лейбница. Разность F(b) – F(a) кратко записывают так:

Поэтому формулу Ньютона-Лейбница будем записывать и так:

Докажем, что определённый интеграл не зависит от того, какая первообразная подынтегральной функции взята при его вычислении. Пусть F(x) и Ф(х) – произвольные первообразные подынтегральной функции. Так как это первообразные одной и той же функции, то они отличаются на постоянное слагаемое: Ф(х) =F(x) + C. Поэтому

Тем самым установлено, что на отрезке [a, b] приращения всех первообразных функции f(x) совпадают. Таким образом, для вычисления определённого интеграла необходимо найти любую первообразную подынтегральной функции, т.е. сначала следует найти неопределённый интеграл. Из всех первообразных для f(x) выбирается обычно та, которая соответствует равной нулю производной постоянной, и к ней применяется формула Ньютона-Лейбниц

Теорема 1. Определённый интеграл с одинаковыми пределами интегрирования равен нулю, т.е.

Это свойство содержится в самом определении определённого интеграла. Однако его можно получить и по формуле Ньютона-Лейбница:

Теорема 2. Величина определённого интеграла не зависит от обозначения переменной интегрирования, т.е.

Теорема 3. Постоянный множитель можно выносить за знак определённого интеграла, т.е.

 

Теорема 4. Определённый и нтеграл от алгебраической суммы конечного числа функций равен алгебраической сумме определённых интегралов от этих функций, т.е.

Теорема 5. Если отрезок интегрирования разбит на части, то определённый интеграл по всему отрезку равен сумме определённых интегралов по его частям, т.е. если

то

Теорема 6. При перестановке пределов интегрирования абсолютная величина определённого интеграла не меняется, а изменяется лишь его знак, т.е.

Теорема 7 (теорема о среднем). Определённый интеграл равен произведению длины отрезка интегрирования на значение подынтегральной функции в некоторой точке внутри его, т.е.

Теорема 8. Если верхний предел интегрирования больше нижнего и подынтегральная функция неотрицательна (положительна), то и определённый интеграл неотрицателен (положителен), т.е. если

Теорема 9. Если верхний предел интегрирования больше нижнего и функции и непрерывны, то неравенство

можно почленно интегрировать, т.е.