Векторное произведение векторов, его свойства.

Скалярное произведение векторов, его свойства.

Скалярным произведением двух ненулевых векторов а и b называетсячисло, равное произведению длин этих векторов на косинус угла междуними. Обозначается ab,а* b(или( а, b)).Итак, по определению,

Формуле (6.1) можно придать иной вид. Так как |a| cosg=пр ba, (см. рис.14), a |b| cosg = пр ab, то получаем:

т. е. скалярное произведение двух векторов равно модулю одного из них, умноженному на проекцию другого на ось, сонаправленную с первым вектором.

Свойства скалярного произведения:

1. Скалярное произведение обладает переместительным свойством: ab=ba

5. Если векторы а и b(ненулевые) взаимно перпендикулярны, то их скалярное произведение равно нулю, т. е. если a ^b, то ab=0. Справедливо и обратное утверждение: если ab=0 и а¹ 0¹b, то а^ b

Выражение скалярного произведения через координаты векторов.

Пусть заданы два вектора

Найдем скалярное произведение векторов, перемножая их как многочлены (что законно в силу свойств линейности скалярного произведения) и пользуясь таблицей скалярного произведения векторов i, j, k:

Итак, скалярное произведение векторов равно сумме произведений их одноименных координат.

Пример: Доказать, что диагонали четырехугольника, заданного координатами вершин А(-4;-4;4), В(-3;2;2),C(2; 5;1), D(3;-2;2), взаимно перпендикулярны.

Решение: Составим вектора АС и BD, лежащие на диагоналях данного четырехугольника. Имеем: АС = (6;9;-3) и BD = (6;-4;0). Найдем скалярное произведение этих векторов:

АС • BD = 36 - 36 - 0 = 0.

Отсюда следует, что AC^BD. Диагонали четырехугольника ABCD взаимно перпендикулярны.

Векторное произведение векторов, его свойства.

Определение векторного произведения:

Три некомпланарных вектора a, b и с, взятые в указанном порядке, образуют правую тройку, если с конца третьего вектора с кратчайший поворот от первого вектора а ко второму вектору b виден совершающимся против часовой стрелки, и левую, если по часовой (см. рис. 16).

Векторным произведением вектора а на вектор b называется вектор с, который:

1. Перпендикулярен векторам a и b, т. е. с^а и с^b;

2. Имеет длину, численно равную площади параллелограмма, построенного на векторах а и b как на сторонах (см. рис. 17), т. е.

3.Векторы a, b и с образуют правую тройку.

Векторное произведение обозначается а х b или [а,b]. Из определения векторного произведения непосредственно вытекают следующие соотношения между ортами i , j и k(см. рис. 18):

i х j = k, j х k = i, k х i = j.

Докажем, например, что iхj=k.

1) k^i, k^j;

2) |k|=1, но | i x j| = |i| • |J| • sin(90°)=1;

3) векторы i , j и k образуют правую тройку (см. рис. 16).

Свойства векторного произведения

1. При перестановке сомножителей векторное произведение меняет знак, т.е. ахb=(bхa) (см. рис. 19).

Векторы ахb и b ха коллинеарны, имеют одинаковые модули (площадь параллелограмма остается неизменной), но противоположно направлены (тройки а , b , ахb и a , b , bxa противоположной ориентации). Стало быть axb = -(bxa).

2. Векторное произведение обладает сочетательным свойством относительно скалярного множителя, т. е. l(ахb) = (lа)хb = а х(lb).

Пусть l>0. Векторl(ахb) перпендикулярен векторам а и b . Вектор (lа)хb также перпендикулярен векторам а и b (векторы а, lа лежат в одной плоскости). Значит, векторы l(ахb) и (lа)хb коллинеарны. Очевидно, что и направления их совпадают. Имеют одинаковую длину:

Поэтому l(aхb)=lахb . Аналогично доказывается при l<0.

3. Два ненулевых вектора а и b коллинеарны тогда и только тогда, когда их векторное произведение равно нулевому вектору, т. е. а||b<=>ахb =0.

В частности, i *i =j *j =k *k =0.

4. Векторное произведение обладает распределительным свойством:

(a+b) хс= ахс+bхс.