Линейные дифференциальные уравнения второго порядка с постоянными коэффициентами

Билет 22

Линейные дифференциальные уравнения первого порядка

Определение. Уравнение вида y'+ρ(x)y=f(x), где ρ(x) и f(x) непрерывные функции, называется линейным дифференциальным уравнением первого порядка.

Линейное дифференциальное уравнение первого порядка с переменными коэффициентами имеет общий вид

Уравнения в такой форме могут быть решены путём умножения на интегрирующий множитель

получим

используем правило дифференцирования произведения

что, после интегрирования обеих частей, дает нам

Таким образом, решение линейного дифференциального уравнения первого порядка

(в частности, с постоянными коэффициентами) имеет вид

где C является константой интегрирования.

Пример

Возьмём дифференциальное уравнение первого порядка с постоянными коэффициентами:

Это уравнение имеет особое значение для систем первого порядка, таким как RC-схемы и масс-демпфер[неизвестный термин] системы

В этом случае, p(x) = b, r(x) = 1.

Следовательно, решение будет:

 

Билет 23

Линейные дифференциальные уравнения второго порядка с постоянными коэффициентами

Уравнение вида y''+ρy'+qy=f(x), где ρ и q – вещественные числа, f(x) – непрерывная функция, называется линейным дифференциальным уравнением с постоянными коэффициентами.
Рассмотрим линейное уравнение второго порядка вида:
y''+ρy'+qy=0, (1)
у которого правая часть f(x) равна нулю. Такое уравнение называется однородным.
Уравнение
K2+ρK+q=0 (2)
называется характеристическим уравнением данного уравнения (1).
Характеристическое уравнение (2) является квадратным уравнением, имеющим два корня. Обозначим их через К1 и К2.
Общее решение уравнения (1) может быть записано в зависимости от величины дискриминанта D2–4q уравнения (2) следующим образом:
1. При D>0 корни характеристического уравнения вещественные и различные (К1К2), и общее решение имеет вид .
2. При D=0 корни характеристического уравнения вещественные и равные (К1=К2=К), и общее решение имеет вид:
3. Если D<0, то корни характеристического уравнения комплексные: , где – мнимая единица, и общее решение (К1=α+βi, К2=α–βi, β≠0), имеет вид y=eαx(C1 cosβx+C2 sinβx).
Пример 1. Найти общее уравнение y''–y'–2y=0.
Решение. Характеристическое уравнение имеет вид K2–K–2=0, его корни К1=1, К2=–2 вещественные и различные. Общее решение уравнения имеет вид y=C1ex+C2e–2x. Пример 3. Найти общее решение уравнения y''–4y'+13y=0.
Решение. Характеристическое уравнение имеет вид К2–4К+13=0, его корни К1=2+3i, К2=2–3i комплексные. Общее решение уравнения имеет вид y=e2x(C1 cos3x+C2sin3x).
Рассмотрим теперь линейное неоднородное уравнение второго порядка:
y''+ρx+qy=f(x), (3)
где f(x) – непрерывная функция, отличная от нуля.
Общее решение такого уравнения представляет собой сумму частного решения неоднородного уравнения (3) и общего решения yосоответствующего однородного уравнения (1):
.
Поскольку нахождение общего решения однородного уравнения мы уже рассмотрели, то остаются рассмотреть вопрос о нахождении частного решения. Рассмотрим различные виды правых частей уравнения (3).
1) Пусть правая часть имеет вид f(x)=eαxPn(x), где Pn(x) – многочлен степени n. Тогда частное решение ищем в виде , где Qn(x) – многочлен той же степени, что и Pn(x), а r – число, показывающее, сколько раз α является корнем характеристического уравнения.

Билет 24

· Суммой событийA и B называется событие, при котором произошло или A, или B, обозначается оно A + B. Например, A1 + A5 означает, что на кубике A выпало или 1, или 5. Можно доказать, что вероятности несовместных событий складываются, то есть, если бросать только кубик A, то p (A1 + A5) = p (A1) + p (A5) = 1/6 + 1/6 = 1/3.

Доказательство

Выпишем все возможные результаты броска кубика A: A1, A2, A3, A4, A5, A6. Действительно, вариантов с выпадением 1 или 5 два, всего вариантов шесть, получаем p (A1 + A5) = 2/6 = 1/3. Пусть из N возможных исходов a вариантов приводят к событию A, b вариантов – к событию B, причём A и B несовместны. Тогда

Если бросать одновременно два кубика A и B, то событием будет пара чисел (a, b), выпавших на кубиках A и B соответственно. Обозначим это событие AaBb. Например, A1B5 означает, что мы бросили два кубика одновременно, на кубике A выпало 1, а на B выпало 5.