Эллинистическая Греция в годы детства 17 страница

Эти же работы Архимеда привлекали к себе главное внимание ученых и в конце XVI в. Так, в 1586 г. голландец Симон Стэвин выпустил свои «Начала гидростатики», которые всецело базировались на прекрасно усвоенном им труде Архимеда и являлись его продолжением. Он точно копирует схему архимедова сочинения «О плавающих {245} телах» с его определениями и постулатами, из которых логически выводится все дальнейшее. Он развивает учение о плавающих телах в духе Архимеда. Так, например, в дополнение к выводам Архимеда он показал, что давление на круглую пластинку, погруженную в воду и расположенную не параллельно ее поверхности, равно весу водяного усеченного цилиндра, причем центр давления на нее лежит на пересечении ее поверхности с перпендикуляром, опущенным на нее из центра тяжести цилиндра.

Однако в ряде мест это сочинение уже заострено против Архимеда. Не называя Архимеда по имени, автор ведет полемику с его формально риторичной и непрактичной схемой. Архимед, как мы видели (стр. 185), доказывал, что поверхность воды должна иметь форму сферы. По этому поводу Стэвин в постулате VI замечает: «Известно, что поверхность воды имеет форму сферы... Но принятие соответствующего положения чрезвычайно затруднило бы последующие доказательства, не давая никакой практической выгоды. В целях упрощения, мы принимаем поэтому, что поверхность воды — плоскость». Архимед утверждал, что давление жидкости, находящейся в покое, во всех точках одинаковое; в противном случае жидкость перемещалась бы из участков с большим давлением в участки с меньшим, пока не достигла бы состояния покоя. С точки зрения Стэвина самое допущение того, что жидкость раньше или позже должна прийти в состояние покоя, вовсе не является само собой подразумевающимся; поэтому он прибавляет дополнительный постулат: «вечное движение», perpetuum mobile, невозможно. Наконец, в виде поправки к рассуждениям Архимеда он вводит такой фактор, как вес воздуха.

Характерно также упрощение, внесенное им в архимедов метод исчерпания. Как впоследствии Ньютон, он раз навсегда постулирует: «Величины, разность между которыми меньше любой заданной величины, равны между собой».

Большой интерес привлекают к себе в эту эпоху и «зажигательные зеркала», открытие которых по традиции приписывалось Архимеду. Оронт Финэ (Orontus Finaeus) выпустил специальную книгу, посвященную этому во-{246}просу (см. стр. 236, примечание), в котором присоединяется к выводам Анфемия (см. стр. 235); это — тот самый Финэ, который, как и знаменитый филолог И. Скалигер (J. Scaliger, Nova Cyclometria, Лейден, 1592), считал возможным найти точное значение π.

Начало серьезной и углубленной работе над математическими сочинениями Архимеда положил великий основатель нынешней алгебры Вьета. Мы уже указали на те чрезвычайные трудности, с которыми должны были на первых порах встретиться ученые, оторвавшиеся от античной школьной традиции, особенно в тех случаях, когда Архимед находил доказательство по атомистическому методу, а затем перелицовывал его на апагогическое; в этом случае смысл и цель доказательства совершенно ускользают от читателя, не говоря уже о том, что и вообще геометрическая алгебра древних не наглядна и весьма трудна для восприятия. Вьета решил изучить метод или «канон» доказательства таких теорем и выделил доказательства, найденные по методу геометрической алгебры, в особый курс «Effectionum geometricarum canonica recensio», вышедший в 1593 г. Уже выше (стр. 102) мы отметили особые трудности архимедова доказательства теоремы о равенстве подкасательной и соответствующей дуги спирали. Вьета вначале так и не мог разобраться в нем и считал парадоксальный на вид вывод Архимеда о равенстве кривой и прямой линии неверным и основанным на логической ошибке. Но впоследствии он выпустил особое сочинение «О спиралях», в котором признается в сделанном им промахе и восхищается доказательством Архимеда. Прямым последователем Архимеда был Вьета и в применении νεΰσις для решения уравнений 3-й степени и задачи трисекции угла, а также в определении величины π, которую он не только нашел с значительно большей точностью, чем Архимед, но и впервые представил в виде бесконечного ряда; 1 он нашел π с точностью до 9 знаков. Еще большей точности достиг его современник ван-Румен (van Roomen, Adrianus Romanus). В ответ на попытку И. Скалигера най-{247}ти точную2 величину π он выпускает свою «Апологию Архимеда против Скалигера», где дает греческий текст сочинения Архимеда «Об измерении круга», латинский перевод, комментарий и десять диалогов, в которых по всем правилам схоластики доказывает невозможность найти точное значение π. В другой книге, в сочинении «Метод многоугольников» («Methodus polygonorum»), вышедшей в Лувене в 1593 г., ван-Румен дает значение π с 15 десятичными знаками, вычисленное по методу Архимеда.

С начала XVII в. внимание ученых привлекает к себе преимущественно другая группа произведений Архимеда. В связи с практическими потребностями выдвигаются на первый план проблемы измерения площадей и объемов. Трудно судить, прав ли Ольшки, утверждающий, что атомистические методы решения таких задач сохранились в устной традиции техников и архитекторов; скорее, ученые XVII в. либо получили эти решения в наследство от арабов, либо пришли к ним самостоятельно, расшифровывая непонятные им решения, содержащиеся у Архимеда. Впрочем, нельзя забывать, что архимедов «Эфод» был до 1906 г. не известен, а во всех прочих сочинениях Архимеда атомистический метод завуалирован и переработан в апагогические доказательства.

Для ученых XVII в. открывалось несколько путей: 1) считать, что Архимед знал атомистический метод, но скрывал его от читателя; 2) считать, что апагогический метод Архимеда при всей его точности является недостаточно наглядным и убедительным и что он поэтому нуждается в замене новым; 3) поступать так, как поступали со священным писанием, т. е. придавать аргументации Архимеда тот смысл, которого она не имела, истолковывая ее в смысле метода неделимых.

По этому последнему пути пошел Кеплер. Его вышедшая в 1615 г. «Стереометрия винных бочек» преследовала, как видно из заглавия, практическую цель. Первую часть ее Кеплер озаглавил «Архимедова стереометрия». Он дает здесь ряд теорем из сочинений Архимеда «О шаре и цилиндре», но в чрезвычайно упрощенной трактовке. Он {248} признает (стр. 114 русск. пер.), что Архимед пользовался методом косвенного доказательства, но, по мнению Кеплера, понимать Архимеда надо так: окружность как бы (velut) состоит из стольких частиц, сколько в ней точек, т. е. из бесконечного числа частиц. Если соединить концы каждой, такой частицы с центром, получим ряд треугольников с вершинами в центре и т. д. Тела представляют собой «ставшие телом плоскости» (plana corporata, т. е. совокупности ряда наложенных друг на друга плоскостей: цилиндр — кругов, правильный параллелепипед — квадратов). Поэтому объем цилиндра относится к объему вписанного в него параллелепипеда, как площади их оснований. Одним словом, метод исчерпания всюду отбрасывается и заменяется бесконечно малыми.

Разумеется, такое толкование в стиле «гармонических» толкований священного писания — прямое насилие над Архимедом, и Александр Андерсон был прав, когда в 1616 г. в сочинении «Иск об освобождении Архимеда» («Vindiciae Archimedis») заявлял, что Кеплер фальсифицирует Архимеда. Однако Кеплер, игнорируя метод доказательства Архимеда, угадал его евристический метод; поэтому в «Supplementa ad Archimedem» ему удается найти объем ряда тел, не рассмотренных Архимедом, по большей части вполне правильно.

Тем же духом пропитано издание Архимеда, сделанное Давидом Рево (Davidus Rivaltua) и вышедшее в 1615 г. в Париже «с новыми доказательствами и комментариями» (novis demonstrationibus commentariisque illustrata). Здесь даны полностью только тезы теорем, а доказательства сокращены и упрощены. Необходимо отметить, что, как видно из ссылок в «Геометрии неделимых»1 , именно этим текстом Архимеда пользовался знаменитый математик Бонавентура Кавальери (1590—1647).

Вряд ли можно назвать еще какого-нибудь ученого, который знал бы Архимеда так глубоко и основательно, как Кавальери. Еще в молодости Кавальери изучил, наряду с Аполлонием, Паппом и Птолемеем, также и Архимеда. Об этом свидетельствует такой компетентный судья, как Галилей, называющий его в своих письмах {249} «новым Архимедом» и «соперником Архимеда». Изучая последовательно все наследие Архимеда, Кавальери дополняет недостающие доказательства, старается заменить доказательства Архимеда более простыми. Работая над «Шаром и цилиндром», он придумывает новые доказательства для нахождения объема конуса, столь же строгие, как у Архимеда, но более простые; работая над «Сфероидами и коноидами», он находит объем нового тела, tympanum hyperbolicum, эллиптического гиперболоида, неизвестного Архимеду. Он нашел также более простой вывод квадратуры параболы, а, работая над спиралями, он, по его собственным словам, «пошел значительно дальше Архимеда», не только найдя новым путем квадратуру спирали, но и открыв ряд новых теорем. Вслед за Архимедом он применяет законы статики к решению геометрических задач, но при этом исходит не только из тел с равномерно распределенной материей, но и постулирует тела, удельный вес которых изменяется по некоторому определенному закону. Изучая вслед за Архимедом гидростатику, он, подобно Архимеду, конструирует новую машину «гидраконтистерий» и пишет два исследования по гидравлике. Наконец, отправляясь от приписывавшегося Архимеду исследования о зажигательных зеркалах, он изучает фокусные свойства конических сечений.

Но, конечно, важнее всего этого «Геометрия неделимых», дающая новые принципы интегрирования на основе работ Архимеда. Останавливаться сколько-нибудь подробно на развитии учения о квадратурах у Кавальери и его преемников мы здесь, разумеется, не можем; для этого пришлось бы написать целую книгу 2. Здесь отметим только, что Кавальери, в противоположность своим предшественникам и преемникам, прекрасно понимал, что метод исчерпания давал абсолютно доказанные и чуждые противоречий результаты, чего ему самому с его методом неделимых так и не удалось достичь. Но, с другой стороны, Кавальери очень резко ощущал, что метод Архимеда не-{250}плодотворен, искусственен, не нагляден и поэтому не отличается непосредственной убедительностью; Кавальери стремился всюду, где это возможно, заменить доказательства Архимеда прямыми доказательствами, а когда в одном случае (при определении объема пирамиды) ему не удалось это сделать, он ощущал это как большой недостаток своей системы. Тем не менее, понимая, что его метод недостаточно убедителен, он находит нужным присоединить в последней книге своей «Геометрии» еще доказательства своих теорем more Archimedeo. К сожалению, для Кавальери еще был недоступен «Эфод» Архимеда, из которого он мог бы убедиться, что и сам Архимед находил свои решения при помощи атомистического метода, считая его более наглядным и плодотворным.

Очень большое влияние оказал Архимед и на математическое творчество двух современников Кавальери — голландца Гюйгенса (1654) и англичанина Броункера. Как мы говорили выше, Архимед находил квадратуру параболического сегмента, вписывая в него многоугольную прямолинейную фигуру и последовательно удваивая число ее сторон. Он показывал, что каждая новая прибавка к площади этой многоугольной фигуры меньше 1/4 предыдущей и таким образом получал как верхний предел для площади параболического сегмента

1/4 + (1/4)2 + (1/4)3 +...

Гюйгенс применил этот же прием для нахождения площади кругового сегмента. Он доказывает теоремы: разность между площадью (resp. длиной окружности) круга и площадью (resp. периметром) вписанного правильного 2n-угольника больше 1/3 разности между площадями (resp. периметрами) вписанных правильных 2n-угольника и n-угольника; разность между площадью круга и 2/3 площади описанного правильного многоугольника больше 1/3 площади вписанного правильного одноименного многоугольника и т. д. Этим путем Гюйгенс получил для π ряд, {251} сходящийся гораздо быстрее, чем у Архимеда (уже для 60-угольника он нашел таким путем 9 точных знаков!). Броункер применил этот же архимедов прием для нахождения квадратуры гиперболического сегмента. Однако Гюйгенс и Броункер были последними преемниками Архимеда в этом вопросе: «Со времени Уоллиса вместо способа вписанных и описанных многоугольников основной задачей стало разыскание аналитических выражений для отношения длины окружности к диаметру, вследствие чего старые архимедовы методы были забракованы» (Рудио).

Гюйгенс (как, впрочем, и Паскаль) унаследовал у Архимеда также и статический метод интегрирования (при помощи нахождения центра тяжести) и теорему о свойстве подкасательной спирали.

 
 

Гюйгенс, Стэвин, Торичелли, Ферма, Паскаль и др. были, таким образом, продолжателями Архимеда. Тем не менее результатом выхода в свет книги Кавальери и сочинений этих его современников было то, чего сам Кавальери меньше всего мог бы ожидать: сочинения Архимеда постепенно перестают изучать как основное руководство для усовершенствования в математике и механике, в нем все более и более становятся склонны видеть почтенную реликвию. Математики этого нового времени жадно стремятся расширить рамки геометрии, обогатив ее новыми истинами; стоит ли возиться с кропотливыми доказательствами исчерпанием, когда все может быть доказано так просто по методу неделимых? Архимед становится символом реакции в математике; книга Кавальери становится знаменем, вокруг которого группируются все те, кто тяготился громоздкостью процедуры исчерпания. «Долой Архимеда, да здравствует Кавальери!» становится боевым кличем математиков этой эпохи. Так, друг и современник Кавальери Торичелли замечал: «Метод Кавальери является действительно научным способом доказательства, потому что всегда идет путем прямым и свойственным самой природе. Жаль мне древней геометрии (т. е. геометрии Архимеда), которая... нашла столь мало истин, касающихся определения величины тел, оставив это злополучное убожество в наследие нашему веку». Так, Ферма находил òxdx и òx2dx, как мы видели, по способу Архимеда, {252} но общая формула

выводится им при помощи простой аналогии; архимедова метода исчерпания с reductio ad absurdum он вообще не применяет, хотя и относится к нему с большим уважением, как к почтенной реликвии. Он раз навсегда заявляет: «Во всех случаях удобно может быть проведен и архимедов способ доказательства через reductio ad absurdum с помощью описанных и вписанных фигур». Замечание это верно далеко не для всех случаев, и ясно, что сам Ферма и не пытался проверять его: в числе изучаемых им случаев есть и несобственные интегралы (с двойным предельным переходом), где провести такое доказательство было бы затруднительно.

Так же, как Ферма, поступает и Паскаль; и он довольствуется априорным, в ряде случаев неверным утверждением, будто «все то, что доказано путем неделимых, можно доказать и методом Архимеда», освобождая себя таким образом навсегда от обязанности давать строгие доказательства своих положений.

Итак, Кавальери, Ферма и Паскаль дали в руки математикам новое оружие; книги Архимеда перестают быть настольными учебниками математики — их сдают в архив. Такэ (А. Tacquet), бывший упрямым поклонником архимедова метода и в своей книге «Cylindricorum et annularium liber», вышедшей в 1651 г., требовавший, чтобы каждое геометрическое положение доказывалось методом исчерпания, принужден с прискорбием заметить: «Sed illum plures laudant quam legunt; admirantur plures quam intelligunt». («Архимеда больше люди хвалят, чем читают; больше людей восхищаются им, чем понимают его»). Это замечание содержится в книге «Элементы геометрии на плоскости и в пространстве с добавлением нескольких теорем из Архимеда», вышедшей в 1654 г. и посвященной пропаганде метода Архимеда. Однако сам Такэ никакого нового алгорифма предельного перехода не предложил, а метод исчерпания (как указывал уже сам Архимед, чтó, впрочем, не было известно Такэ) был бесплоден для твор-{253}ческой математической работы. Книга Такэ никого увлечь или убедить не могла, ибо ничего нового, принципиально интересного для людей этого бурного периода она не давала; она давала лишь доказательство методом исчерпания для некоторых кубатур, уже найденных методом неделимых.

Архимед и его наука отходили в область прошлого, и вряд ли было случайностью, что именно Такэ написал первую (после авторов античности) историю математики: «Historica narratio de ortu et progressu matheseos». Такие книги обычно пишут, когда заканчивается целая эпоха в истории человеческой мысли и можно подвести итог сделанному.

Эпоха революционной борьбы с Архимедом должна была скоро закончиться, и должно было наступить время, когда к оценке Архимеда можно будет подойти более объективно. Такой объективный подход к Архимеду характерен для английских ученых. Они не спорят о том, какой метод лучше — архимедов метод исчерпания или новый метод бесконечно малых. Тщательное изучение Архимеда приводит их к правильному (и в 1906 г. вполне подтвердившемуся благодаря нахождению «Эфода»!) выводу, что сам Архимед для нахождения своих теорем применял метод неделимых. Барроу в XXVII лекции своего университетского курса в Кэмбридже (который слушал, между прочим, и Ньютон) заметил, что предлагаемые Архимедом решения выдают его и показывают, какого рода анализ он употреблял («quod ipsum satis prodit ас arguit qualem is analysin usurpavit»); иначе, говорит Барроу, «было бы совершенно непонятно, как Архимед путем огромного числа сложений, делений, перестановок и обращений пропорций, лишенных логической целеустремленности, мог прийти к верному выводу. Верный результат мог бы быть при таком предположении только делом случая, а не логических рассуждений и искусства, но при этом было бы непонятно, почему случай каждый раз выводил Архимеда на правильную дорогу».

Поэтому, выпуская в 1675 г. в Лондоне свой латинский перевод Архимеда, Барроу считает возможным, не придерживаясь точно контекста подлинника, излагать своими словами его предложения сокращать доказательства и за-{254}менять их своими. Еще через три года, в 1679 г., Барроу выпускает в свет свою «Лекцию, в которой теоремы Архимеда о шаре и цилиндре излагаются в обработке методом неделимых». Барроу учел и «Леммы», опубликованные в 1657 и 1661 гг.

Уоллис, как издатель, пошел по более научному пути. В 1676 г. он выпускает в свет подлинный греческий текст «Псаммита» и «Измерения круга» с комментариями Евтокия, новым латинским переводом и своими примечаниями. Архимеда он ставил чрезвычайно высоко, оценивая его так: «Муж поразительной проницательности, он заложил первоосновы почти всех открытий, развитием которых гордится наш век». Однако с архимедовым методом трактовки геометрических вопросов он согласиться не может. Как и Барроу, он приходит к выводу, что Архимед «умышленно скрывал метод своих решений». Это, конечно, замечает он, наилучший способ для того, чтобы избежать упреков и возражений со стороны читателей; но сам Уоллис не хотел следовать примеру Архимеда. Конечно, замечает Уоллис, было бы умнее, если бы и он просто выставлял и доказывал отдельные предложения, вместо того чтобы излагать весь свой метод; он избежал бы таким образом замечаний и упреков, но не мог бы подготовить почву для дальнейших успехов математики.

Какая ирония судьбы! В то время, когда Уоллис делал этот выговор Архимеду, еще не был найден его «Эфод», и Уоллис не мог знать, что, порицая Архимеда, он почти дословно повторяет его же собственные слова: «Я счел уместным в этой книге изложить мой метод... полезный и для доказательства теорем... Легче найти строгое доказательство после того, как при помощи этого метода приобретена ориентировка в вопросах... Теоремы, которые я сейчас публикую, я нашел прежде при помощи этого метода, и я решил письменно изложить его... потому что, как я убежден, я оказываю этим немаловажную услугу математике: многие из моих современников или последователей, ознакомившись с этим методом, будут в состоянии находить новые теоремы, до которых я еще не додумался».

К сожалению, мечта Архимеда не исполнилась: в эпоху бурного роста математической науки его «Эфод» оставался {255} лежать под спудом. Если бы он был найден на три столетия раньше, было бы сбережено много времени и энергии, затраченных на бесполезные споры.

К началу XVIII в. книги Архимеда окончательно перестают быть настольными курсами математики. Достаточно просмотреть указатель к IV тому «Лекций по истории математики» М. Кантора, чтобы убедиться, что с этого времени Архимеда изучают только историки математики. Новая система удобных алгебраических обозначений и преобразований и новый алгорифм для действий над бесконечно малыми величинами избаловали новое поколение математиков и сделали их туго восприимчивыми как к громоздкой и неуклюжей геометрической алгебре древних, так и к громоздкому и неуклюжему методу исчерпания. Строгость новых инфинитезимальных методов была достигнута не возвратом к методу исчерпания, а другими, новыми путями.

Правда, Лежандр (Legendre) выпустил в 1812 г. свои «Éléments de géometrie», в которых восстанавливает в правах старый метод исчерпания, почти не внося в него изменений; он даже называет его архимедовым методом (как мы видим теперь из «Эфода», название это очень неудачное). Но книга Лежандра проникнута косным реакционным духом и, по замечанию Кантора, «не отвечала требованиям того времени, которые ставились ей философской критикой».

Итак, Архимед сыграл огромную роль в истории математики и в эллинистическо-римскую эпоху (Гемин, Герон, Папп), и в средние века (арабские математики), и в XVIIв., в один из наиболее блестящих периодов бурного роста математики.

И в наше время чтение Архимеда принесет, конечно, свою пользу не только в деле тренировки молодых математиков; оно может навести творческого математика на ряд новых, принципиально интересных мыслей. Но громоздкое научное оформление вынуждает математика наших дней подходить к Архимеду, как к интересной реликвии прошлого: это — великолепный каменный топор, виртуозно изготовленный художником-дикарем, а не остро отточенный клинок удобного современного ножа, сработанного на фабрике с учетом всех нужд современности. {256}

Таблица 15. Архимед и его ученики. Снимок с

картины Рафаэля

Этот новый, исторический подход к Архимеду звучит уже в отзыве на пейраров перевод Архимеда, представленном Даламбером во Французскую Академию Наук: «За Архимедом сохранится репутация одного из самых удивительных гениев, которые когда-либо посвящали себя математике... Несмотря на преимущества новых методов, сознаваемые всеми геометрами, всякий математик должен заинтересоваться, какими своеобразными путями и глубокими размышлениями Архимед мог достичь таких сложных результатов». {257}