Физический уровень протокола DSS-1

Тема 6 . Архитектура протокол DSS-1

Введение

Разработанный ITU-T протокол цифровой абонентской сиг­нализации №1 (DSS-1 - Digital Subscriber Signaling 1) между поль­зователем ISDN и сетью ориентирован на передачу сигнальных сообщений через интерфейс «пользователь—сеть» по D-каналу это­го интерфейса. Международный союз электросвязи (ITU-T) оп­ределяет канал D в двух вариантах:

а) канал 16 Кбит/с, используемый для управления соединения­ми по двум В-каналам;

б) канал 64 Кбит/с, используемый для управления соединения­ми по нескольким (до 30) В-каналам.

Концепции общеканальной сигнализации протоколов DSS-1 и ОКС-7 весьма близки, но эти две системы были специфициро­ваны в разное время и разными Исследовательскими комиссиями ITU-T, а потому используют различную терминологию. Тем не менее, некоторые пояснения в отношении сходства концепций и различий в терминах DSS-1 и ОКС-7 представля­ются полезными. На рис. 1 показаны АТС ISDN, звено сигна­лизации ОКС-7, оборудование пользователя ISDN и D-канал в интерфейсе «пользователь-сеть». Функции D-канала сходны с функциями звена сигнализации ОКС-7. Информационные бло­ки в D-канале, называемые кадрами, аналогичны сигнальным единицам (SU) в системе ОКС-7.

Рис. 1. Функциональные объекты протоколов DSS-1 и ISUP: (а) -примитивы DSS-1 и (б) — примитивы ОКС-7

Архитектура протокола DSS-1 разработана на основе семиуровневой модели взаимодействия открытых систем (модели OSI) и соответствует ее первым трем уровням. В контексте этой модели пользователь и сеть именуются системами, а протокол, как это имело место, например, для ОКС-7 определяется специ­фикациями:

• процедур взаимодействия между одними и теми же уровня­ми в разных системах, определяющих логическую последо­вательность событий и потоков сообщений;

• форматов сообщений, используемых для процедур органи­зации логических соединений между уровнем в одной систе­ме и соответствующим ему уровнем в другой системе. Фор­маты определяют общую структуру сообщений и кодирова­ние полейв составе сообщений;

примитивов, описывающих обмен информацией между смежными уровнями одной системы. Благодаря специфика­циям примитивов интерфейс между смежными уровнями может поддерживаться стабильно, даже если функции, вы­полняемые одним из уровней, изменяются.

Уровень 1 (физический уровень) протокола DSS-1 содержит функции формирования каналов В и D, определяет электрические, функциональные, механические и процедурные характеристики доступа и предоставляет физическое соединение для передачи со­общений, создаваемых уровнями 2 и 3 канала D. К функциям уров­ня 1 относятся:

• подключение пользовательских терминалов ТЕ к шине S-интерфейса с доступом к каналам В и D;

• подача электропитания от АТС для обеспечения телефонной связи в случае отказа местного питания;

• обеспечение работы в режиме «точка—точка» и в многоточеч­ном вещательном режиме.

Уровень 2 звена, известный также под названием LAPD (link access protocol for D-channels), обеспечивает использование D-канала для двустороннего обмена данными при взаимодействии про­цессов в терминальном оборудовании ТЕ с процессами в сетевом окончании NT. Протоколы уровня 2 предусматривают мультиплек­сирование и цикловую синхронизацию для каждого логического звена связи, поскольку уровень 2 обеспечивает управление сразу несколькими соединениями звена данных в канале D. Кроме того, функции уровня 2 включают в себя управление последовательно­стью передачи для сохранения очередности следования сообще­ний через соединение, а также обнаружение и исправление оши­бок в этих сообщениях.

Формат сигналов уровня 2 — это кадр. Кадр начинается и за­канчивается стандартным флагом и содержит в адресном поле два. важнейших идентификатора — идентификатор точки доступа к ус­лугам (SAPI) и идентификатор терминала (TEI).

SAPI используется для идентификации типов услуг, предос­тавляемых уровню 3, и может иметь значения от 0 до 63. Значение SAPI =0, например, используется для идентификации кадра, кото­рый применяется для сигнализации.

TEI используется для идентификации процесса, обеспечи­вающего предоставление услуги связи определенному терминалу. TEI может иметь любое значение от 0 до 126, позволяя идентифи­цировать до 127 различных процессов в терминалах ТЕ. В базовом доступе эти процессы могут распределяться между 8 терминала­ми, подключенными к общей пассивной шине. Значение ТЕ1=127 используется для идентификации вещательного режима (инфор­мация для всех терминалов).

Для уровня звена данных определены две формы передачи ин­формации: с подтверждением и без подтверждения. При неподтвер­ждаемой передаче информация уровня 3 переносится в ненумеро­ванных кадрах, причем уровень 2 не обеспечивает подтверждение получения этих кадров и сохранение очередности их следования.

При подтверждаемой передаче информации передаваемые уровнем 2 кадры нумеруются. Это позволяет подтверждать (кви­тировать) получение каждого кадра. Если обнаруживается ошиб­ка или отсутствие кадра, осуществляется его повторная передача. Кроме того, при работе с подтверждением вводятся специальные процедуры управления потоками, предохраняющие от перегрузки оборудование сети или пользователя. Передача с подтверждением применима только к режиму «точка—точка».

Уровень 3 (сетевой уровень) предполагает использование сле­дующих протоколов:

• протокол сигнализации, определенный в рекомендации 1.451 или Q.931 (эти две рекомендации идентичны). В этом случае SAPI=0, а протокол сигнализации используется для установ­ления и разрушения базовых соединений, а также для пре­доставления дополнительных услуг;

• протокол передачи данных в пакетном режиме, определен­ный в рекомендации Х.25 и рассмотренный в главе 9 данной книги. В этом случае SAPI= 16;

• другие протоколы, которые могут быть определены в буду­щем. В этих случаях для SAPI всякий раз будет устанавли­ваться соответствующее данному протоколу значение.

Протокол сигнализации Q.931 (уровень 3) определяет смысл и содержание сигнальных сообщений и логическую последователь­ность событий, происходящих при создании, в процессе сущест­вования и при разрушении соединений. Функции уровня 3 обес­печивают управление базовым соединением и дополнительными услугами, а также некоторые дополнительные к уровню 2 транс­портные возможности. Примером таких дополнительных транс­портных возможностей является опция перенаправления сигналь­ных сообщений на альтернативный D-канал (если это предусмот­рено) в случае отказа основного D-канала.

Физический уровень протокола DSS-1

Уровень 1 (физический уровень) интерфейса базового доступа определяется в рекомендации 1.430. Как уже упоминалось в пара­графе 2.2 (рис. 2.4), в базовом доступе скорость передачи на уровне 1 равна 192 Кбит/с и обеспечивает формирование двух В-каналов со скоростью передачи данных 64 Кбит/с и одного D-канала со ско­ростью передачи данных 16 Кбит/с. Оставшийся ресурс скорости — 48 Кбит/с — используется для цикловой синхронизации, байтовой синхронизации, активизации и деактивизации связи между терми­налами и сетевым окончанием NT. Длина цикла составляет 48 би­тов, а продолжительность цикла — 250 мкс. Там же, в предыдущей главе, отмечалось, что интерфейс в точке S перед передачей кадров должен проходить фазу активизации. Цель фазы активизации со­стоит в том, чтобы гарантировать синхронизацию приемников на одной стороне интерфейса и передатчиков на другой его стороне, что достигается обменом сигналами, называемыми INFO. Исполь­зуется пять различных сигналов INFO.

Первый, INFO 0, свидетельствует об отсутствии какого-либо активного сигнала, поступающего от приемопередатчиков S-интерфейса, и передается в том случае, если все приемопередатчики деактивизированы. Когда терминалу ТЕ необходимо установить соединение с сетью, он инициирует активизацию S-интерфейса путем передачи сигнала INFO 1 в направлении от ТЕ к NT. В ответ на сигнал INFO 1 сетевое окончание NT передает в направлении к ТЕ сигнал INFO 2. Сигнал INFO 2 соответствует циклу, рассмот­ренному в предыдущей главе (рис. 2.4), со всеми битами В- и D-каналов, имеющими значение 0. Циклы INFO 2 могут пред­усматривать передачу информации в сверхцикловых каналах, что приводит к нескольким разным формам сигнала INFO 2. Для ука­зания незавершенной активизации интерфейса биту А, называе­мому битом активизации, также присваивается значение 0, а за­тем, когда активизация достигнута, — значение 1. Каждый цикл INFO 2 содержит изменения полярности импульсов, создаваемые последним битом D-канала предыдущего цикла и битом цикло­вой синхронизации F текущего цикла, а также изменения поляр­ности, вызываемые битом L (см. рис .2).

Когда в ТЕ достигается цикловая синхронизация, к NT пе­редается сигнал INFO 3. В ответ на информацию о достижении синхронизации из NT передается сигнал INFO 4, который содер­жит данные В- и D-каналов и данные сверхциклового канала. Теперь интерфейс полностью активизирован циклами INFO 3 в направлении от ТЕ к NT и циклами INFO 4 в направлении от NT к ТЕ.

В том случае, когда сеть инициирует соединение с ТЕ, т.е. активизация осуществляется в направлении от NT к ТЕ, последо­вательность обмена сигналами почти такая же, кроме одного мо­мента: NT выходит из исходного состояния, в котором посылался сигнал INFO 0, передавая сигнал INFO 2. Сигнал INFO 1 в этом случае не используется.

 

Рис. 2. Последовательность сигналов при активизации S-интерфейса: (а) — активизация отТЕ;

(б) — активизация от NT

Уровень LAPD

Протоколы уровня 2 (LAPD — Link Access Procedure on the D-channel) как базового, так и первичного доступа определены в рекомендациях ITU-T 1.440 (основные аспекты) и 1.441 (подроб­ные спецификации). Эти же рекомендации в серии Q имеют но­мера Q.920 и Q.921. Обмен информацией на уровне LAPD осуще­ствляется посредством информационных блоков, называемых кад­рами и схожих с сигнальными единицами ОКС- 7.

Сформированные на уровне 3 сообщения помещаются в ин­формационные поля кадров, не анализируемые уровнем 2. Задачи уровня 2 заключаются в переносе сообщений между пользовате­лем и сетью с минимальными потерями и искажениями. Форматы и процедуры уровня 2 основываются на протоколе управления зве­ном передачи данных высокого уровня HDLC (High-level Data-Link Control procedures), первоначально определенном Международной организацией по стандартизации ISO и образующем подмножест­во других распространенных протоколов: LAPB, LAPV5 и др. Про­токол LAPD, также входящий в подмножество HDLC, управляет потоком кадров, передаваемых по D-каналу, и предоставляет ин­формацию, необходимую для управления потоком и исправления ошибок.

Рис. 3. Формат кадра

Кадры могут содержать либо команды на выполнение дейст­вий, либо ответы, сообщающие о результатах выполнения команд, что определяется специальным битом идентификации коман­да/ответ C/R. Общий формат кадров LAPD показан на рис. 3.

Каждый кадр начинается и заканчивается однобайтовым фла­гом. Комбинация флага (0111 1110) такая же, как в ОКС-7. Имита­ция флага любым другим полем кадра исключается благодаря за­прещению передачи последовательности битов, состоящей из бо­лее чем пяти следующих друг за другом единиц. Это достигается с помощью специальной процедуры, называемой «бит-стаффингом» (bit-stuffing), которая перед передачей кадра вставляет ноль после любой последовательности из пяти единиц, за исключением фла­га. При приеме кадра любой ноль, обнаруженный следом за по­следовательностью из пяти единиц, изымается.

Адресное поле (байты 2 и 3) кадра на рис. 3. содержит иден­тификатор точки доступа к услуге SAPI (Service Access Point Identi­fier) и идентификатор терминала TEI (Terminal Equipment Identifi­er) и используется для маршрутизации кадра к месту его назначе­ния. Эти идентификаторы, определяют соединение и терминал, к которым относится кадр.

Идентификатор пункта доступа к услуге SAPI занимает 6 би­тов в адресном поле и фактически указывает, какой логический объект сетевого уровня должен анализировать содержимое инфор­мационного поля. Например, SAPI может указывать, что содер­жимое информационного поля относится к процедурам управле­ния соединениями в режиме коммутации каналов или к процеду­рам пакетной коммутации. Рекомендацией Q.921 определены зна­чения SAPI, приведенные в табл. 1.

Таблица 1. ЗначенияSAPI

SAPI Функция
Управление соединением ISDN (коммутация каналов)
Пакетная коммутация по Q.931
Пакетная коммутация Х.25
Управление уровнем 2

 

Идентификатор TEI указывает терминальное оборудование, к которому относится сообщение. Код TEI=127 (1111111) указы­вает на вещательную (циркулярную) передачу информации всем терминалам, связанным с данной точкой доступа. Остальные зна­чения (0—126) использются для идентификации терминалов. Диа­пазон значений TEI (табл..2) разделяется между теми термина­лами, для которых TEI назначает сеть (автоматическое назначе­ние TEI), и теми, для которых TEI назначает пользователь (неав­томатическое назначение TEI).

Таблица 2. ЗначенияTEI

TEI Назначение
0-63 Неавтоматическое назначение TEI
64-126 Автоматическое назначение TEI
Вещательный режим

 

При подключении УПАТС (представляющей собой функцио­нальный блок NT2) к АТС ISDN общего пользования с использо­ванием интерфейса PR1 в соответствии с требованиями стандар­тов ETSI, принятых и в России, ТЕ1==0. В этом случае процедуры назначения TEI не применяются.

Бит идентификации команды/ответа C/R (Command/Res­ponse bit) в адресном поле перенесен в DSS-1 из протокола Х.25. Этот бит устанавливается LAPD на одном конце и обрабатывается на противоположном конце звена. Значение C/R (табл..3) классифицирует каждый кадр как командный или как кадр ответа. Если кадр сформирован как команда, адресное поле идентифицирует получателя, а если кадр является ответом, адресное поле иденти­фицирует отправителя. Отправителем или получателем могут быть как сеть, так и терминальное оборудование пользователя.

Таблица 3. БитыC/R в поле адреса

    Кадры, передаваемые сетью Кадры, передаваемые терминалом
Командный кадр C/R=1 C/R=0
Кадр ответа C/R=0 C/R=1

 

Бит расширения адресного поля ЕА (Extended address bit) слу­жит для гибкого увеличения длины адресного поля. Бит расшире­ния в первом байте адреса, имеющий значение 0, указывает на то, что за ним следует другой байт. Бит расширения во втором байте, имеющий значение 1, указывает, что этот второй байт в адресном поле является последним. Если впоследствии возникнет необходимость увеличить размер адресного поля, значение бита расширения во втором бай­те может быть изменено на 0, что будет указывать на существова­ние третьего байта. Третий байт в этом случае будет содержать бит расширения со значением 1, указывающим, что этот байт являет­ся последним. Увеличение размера адресного поля, таким обра­зом, не влияет на остальную часть кадра.

Два последних байта в структуре кадра на рис. 3. содержат 16-битовое поле проверочной комбинации кадра PCS (Frame check sequence) и генерируются уровнем звена данных в оборудовании, передающем кадр. Это поле имеет ту же функцию, что и поле СВ (контрольные биты) в сигнальных единицах ОКС-7 и позволяет LAPD обнаруживать ошибки в полученном кадре. В поле FSC передается 16-битовая последовательность, биты которой формируются как дополнение для суммы (по модулю 2), в которой: а) первым слагаемым является остаток от деления (по модулю 2) произведения х k (x15+x14+…+x+l) на образующий поли­ном (х16125+1), где k - число битов кадра между последним битом открывающего флага и первым битом проверочной комби­нации, исключая биты, введенные для обеспечения прозрачности;

б) вторым слагаемым является остаток от деления (по модулю 2) на этот образующий полином произведения х16 на полином, коэф­фициентами которого являются биты кадра, расположенные ме­жду последним битом открывающего флага и первым битом проверочной комбинации, исключая биты, введенные для обеспече­ния прозрачности. Обратное преобразование выполняется уров­нем звена данных в оборудовании, принимающем кадр, с тем же образующим полиномом для адресного поля, полей управления, информационного и FCS. Протокол LAPD использует соглаше­ние, по которому остаток от деления (по модулю 2) произведения х16 на полином, коэффициентами которого являются биты пере­численных полей и FCS, всегда составляет 0001110100001111 (де­сятичное 7439), если на пути от передатчика к приемнику никакие биты не были искажены. Если результаты обратного преобразова­ния соответствуют проверочным битам, кадр считается передан­ным без ошибок. Если же обнаружено несоответствие результатов, это означает, что при передаче кадра произошла ошибка.

Поле управления указывает тип передаваемого кадра и зани­мает в различных кадрах один или два байта. Существует три кате­гории форматов, определяемых полем управления: передача ин­формации с подтверждением (I-формат), передача команд, реали­зующих управляющие функции (S-формат), и передача информа­ции без подтверждения (U-формат). Табл. 4 содержит сведения об основных типах кад­ров протокола DSS-1.

Рассмотрим эти типы несколько подробнее.

Информационный кадр (I) сопоставим со значащей сигналь­ной единицей MSU в ОКС-7). С по­мощью 1-кадров организуется передача информации сетевого уров­ня между терминалом пользователя и сетью. Этот кадр содержит информационное поле, в котором помещается сообщение сетево­го уровня. Поле управления 1-формата содержит порядковый но­мер передачи, который увеличивается на 1 (по модулю 128) каж­дый раз, когда передается кадр. При подтверждении приема 1-кад­ров в поле управления вводится порядковый номер приема.

Управляющий кадр (S) используется для поддержки функций управления потоком и запроса повторной передачи. S-кадры не имеют информационного поля и сравнимы с сигнальными еди­ницами состояния звена LSSU в ОКС-7 .Например, если сеть временно не в состоянии принимать 1-кадры, пользователю посылается S-кадр «к приему не готов» (RNR). Когда сеть снова сможет принимать 1-кадры, она передает другой S-кадр — «к приему готов» (RR). S-кадр также может использоваться для подтверждения и содержит в этом случае поряд­ковый номер приема, а не передачи.

 

 

Таблица 4. Основные типы кадров LAPD

формат Команды Ответы Описание
Информа­ционные кадры (I) Информация - Используется в режиме с подтверждением для передачи нумерованных кадров, содержащих информационные поля с сообщениями уровня 3
Управля­ющие К приему готов (PR-receive ready) К приему готов (RR-receive ready) Используется для указания готовности встречной стороны к приему I-кадра или для подтверждения ранее полученных 1-кадров
кадры (S) К приему не готов (RNR) К приему не готов (RNR) Используется для указания неготовности встречной стороны к приему I-кадра
    Отказ/переспрос (REJ-reject) Отказ/переспрос (REJ-reject) Используется для запроса повторной передачи 1-кадра
    Ненумерованная информация (UI-unnumbered information)     Используется в режиме передачи без подтверждения
        Отключено (DM-disconnected mode)    
Ненуме­рованные кадры (U) Установка расширенного асинхронного балансного режима (SABME-set asynchronous balanced mode extended)     Используется для начальной установки режима с подтверждением
        Отказ кадра (FRMR-frame reject)    
    Разъединение (DISC-disconnect)     Используется для прекращения режима с подтверждением
        Ненумерованное подтверждение (UA-unnumbered ask) Используется для подтверждения приема команд установки режима, например, SABME, DISC

 

Управляющие кадры можно передавать или как командные, или как кадры ответа.

Ненумерованный кадр (U) не имеет аналогов в ОКС-7. В этой группе имеется кадр ненумерованной информации (UI), единст­венный из группы содержащий информационное поле и несущий сообщение сетевого уровня. U-кадры используются для передачи информации в режиме без подтверждения и для передачи некото­рых административных директив. Чтобы транслировать сообще­ние ко всем ТЕ, подключенным к шине S-интерфейса, станция передает кадр UI с ТЕ1==127. Поле управления U-кадров не содер­жит порядковых номеров.

Как следует из вышеизложенного, информационное поле имеется в кадрах только некоторых типов и содержит информа­цию уровня 3, сформированную одной системой, например, тер­миналом пользователя, которую требуется передать другой систе­ме, например, сети. Информационное поле может быть пропуще­но, если кадр не имеет отношения к конкретной коммутируемой связи (например, в управляющих кадрах, S-формат). Если кадр относится к функционированию уровня 2 и уровень 3 не участвует в его формировании, соответствующая информация включается в поле управления.

Биты P/F (poll/final) поля управления идентифицируют груп­пу кадров (из табл.4), что также заимствовано из спецификаций протокола Х.25. Путем установки в 1 бита Р в командном кадре функции LAPD на одном конце звена данных указывают функци­ям LAPD на противоположном конце звена на необходимость от­вета управляющим или ненумерованным кадром. Кадр ответа с F== 1 указывает, что он передается в ответ на принятый командный кадр со значением Р= 1. Оставшиеся биты байта 4 идентифицируют кон­кретный тип кадра в пределах группы.

И в заключение с учетом уже детально проанализированной структуры кадра уровня 2 протокола DSS-1, еще раз рассмотрим оба способа передачи кадров: с подтвержде­нием и без подтверждения.

Передача с подтверждением. Этот способ используется толь­ко в соединениях звена данных, имеющих конфигурацию «точка-точка», для передачи информационных кадров. Он обеспечивает исправление ошибок путем повторной передачи и доставку не со­держащих ошибок сообщений в порядке очередности. Этот спо­соб подобен основному методу защиты от ошибок при передаче значащих сигнальных единиц MSU в системе ОКС-7.

Поле управления информационного кадра имеет подполя «номер передачи» [N(S)] и «номер приема» [N(R)]. Эти подполя сопоставимы с полями FSN, BSN в сигнальных единицах MSU системы ОКС-7 Протокол LAPD присваивает возрастающие порядковые номера передачи N(S) по­следовательно передаваемым информационным кадрам, а имен­но: N(S)=0, 1, 2,... 127, О, 1,... и т.д. Он также записывает переда­ваемые кадры в буфер повторной передачи и хранит эти кадры в буфере вплоть до получения положительного подтверждения их приема.