Основные технические параметры

Число каналов стабилизации ...........................2

Выходные напряжения, В .............+41 и -41

Максимальный ток нагрузки каждого канала, А ............... 4

Размах пульсаций при токе нагрузки 4 А, мВ...............4,7

Рассеиваемая мощность при максимальном токе нагрузки, Вт..................180

Он состоит из двух независимых стабилизаторов напряжения положительной и отрицательной относительно общего провода полярности. Верхняя часть схемы относится к стабилизатору положительной полярности, а нижняя - отрицательной полярности. Схема стабилизатора отрицательной полярности представляет собой, по существу, зеркальное отражение схемы стабилизатора положительной полярности. Поэтому подробно рассмотрим только стабилизатор напряжения положительной полярности.

Переменное напряжение, снимаемое с обмотки II трансформатора T1, выпрямляет двухполупериодный выпрямитель на сдвоенных диодах Шотки VD3 и VD4 SR30100P, имеющих изолированный корпус, поэтому их удобно крепить на общем теплоотводе.

Через помехоподавляющий дроссель L1 выпрямленное напряжение поступает на сглаживающие и помехоподавляющие конденсаторы C8-C16 и далее на уравнивающие эмиттерные токи параллельно соединённых транзисторов VT1-VT9 резисторы R3-R11. Эти резисторы имеют довольно большое сопротивление, что способствует эффективной "изоляции" коллекторных цепей транзисторов VT1 -VT9 от сетевых помех.

Вместе с транзистором VT20 транзисторы VT1-VT9 образуют мощный составной транзистор с большим коэффициентом усиления тока. Базовый ток транзистора VT20 втекает в коллектор транзистора VT22. Транзистором VT22 управляет напряжение с выхода ОУ DA3.1.

К выходу стабилизатора подключены соединённые последовательно стабилитроны VD13, VD14, суммарное напряжение стабилизации которых служит образцовым для рассматриваемого стабилизатора. Вместо стабилитронов можно установить резистор такого сопротивления, чтобы вместе с резистором R29 он обеспечивал нулевой потенциал в точке их соединения при номинальном выходном напряжении стабилизатора. Но по сравнению со стабилитронами это менее эффективный вариант. Сдвинутый стабилитронами или резистором потенциал в системе стабилизации представляет собой сигнал рассогласования и поступает на инвертирующий вход ОУ DA3.1, неинвертирующий вход которого соединён с проводом "0".

Имейте в виду, что провода "О" и "Общ." должны быть соединены между собой и с общим проводом питаемого от стабилизатора устройства (усилителя) на плате последнего. Это значительно уменьшает уровень наводок и помех в стабилизированном напряжении. Резистор R21 обеспечивает работоспособность стабилизатора, когда к нему не подключён усилитель.

В процессе работы ОУ непрерывно сравнивает потенциал на своём инвертирующем входе с нулевым потенциалом на неинвертирующем входе. Далее он так управляет транзистором VT22, а вместе с ним и составным транзистором VT20, VT1-VT9, чтобы на выходе стабилизатора поддерживалось заданное напряжение.

Предположим, напряжение на выходе стабилизатора уменьшилось вследствие увеличения тока нагрузки. Потенциал на инвертирующем входе ОУ DA3.1 станет отрицательным относительно неинвертирующего, и напряжение на выходе ОУ увеличится. Это приведёт к увеличению коллекторного тока транзистора VT22, а с ним базового и эмиттерного тока транзистора VT20. В результате увеличится суммарный коллекторный ток транзисторов VT1-VT9, компенсируя приращение тока нагрузки. Выходное напряжение вернётся к прежнему значению.

Устройство мягкого старта на транзисторе VT19 и реле K1 обеспечивают плавное нарастание напряжения на батарее конденсаторов C28-C30, С34- C63 при подключении стабилизатора (первичной обмотки трансформатора T1) к сети. В этот момент через резистор R2 начинает течь ток, заряжающий конденсатор C27. Когда через 30...35 с напряжение, приложенное к стабилитрону VD9, достигает 36 В, он открывается. Это приводит к открыванию транзистора VT19 и срабатыванию реле K1, которое переключает резисторы, ограничивающие выходной ток стабилизатора.

Пока реле не сработало, этот ток ограничен резистором R32 до 450...650 мА, что устраняет бросок тока зарядки батареи конденсаторов С28-СЗО, С34-С63 общей ёмкостью более 100000 мкФ. Сработавшее реле подключает параллельно резистору R32 резистор R35. С этого момента стабилизатор может отдавать в нагрузкуток, достигающий 4 А.

При случайном замыкании выхода стабилизатора с общим проводом ток тоже не превысит 4 А, но резко увеличится мощность, рассеиваемая на транзисторах Vt1-VT9. Однако она не превысит 25 Вт на каждый транзистор. Из этого следует, что стабилизатор напряжения надёжен и не боится замыканий в нагрузке.

Чтобы точно установить уровни ограничения тока, необходимо временно заменить резистор R32 переменным резистором сопротивлением около 500 кОм, а резистор R35 не устанавливать. Движок переменного резистора переведите в положение максимального сопротивления. Замкнув выход стабилизатора амперметром, включите стабилизатор и плавно уменьшайте сопротивление переменного резистора, наблюдая за показаниями амперметра. При достижении требующегося безопасного пускового тока выключите стабилизатор, измерьте введённое сопротивление переменного резистора и замените его постоянным резистором такого же сопротивления.

Затем вместо резистора R35 подключите переменный резистор сопротивлением 100 кОм, а к выходу стабилизатора через амперметр - максимальную нагрузку. Включите стабилизатор и дождитесь срабатывания реле. После этого начинайте плавно уменьшать сопротивление переменного резистора. При достижении номинального напряжения стабилизации и заданного максимального тока нагрузки выключите стабилизатор, измерьте введённое сопротивление переменного резистора и замените его постоянным.

Такую же процедуру нужно выполнить и со стабилизатором отрицательного напряжения. Нельзя просто устанавливать резисторы R33 и R36 такого же сопротивления, как соответственно R32 и R35. Дело в том, что коэффициенты передачи тока у транзисторов, применённых в обоих стабилизаторах, существенно различаются. Например, у транзисторов 2SA1943 он - около 140, а у 2SС5200 - только 85.

Трансформаторы T1 и T2 - заказные с пониженной индукцией и вторичными обмотками на 2x54 В (со средними выводами) при токе нагрузки 5 А. Трансформаторы устанавливают каждый со своей стороны в самой нижней части теплообменника (акваблока) системы водяного охлаждения стабилизатора. Акваблок служит своеобразным шасси, на котором размещены все узлы устройства. Перед установкой трансформаторов для них формуют с помощью эпоксидной смолы идеально плоские посадочные площадки. Затем резьбовыми шпильками М12 трансформаторы прижимают к акваблоку.

В режиме холостого хода напряжение на выходах выпрямителей (входах собственно стабилизаторов) - 76 В. При подключении к выходу стабилизатора нагрузки сопротивлением 10 Ом оно падает до 64 В. Если необходим больший ток нагрузки, например 10 А, то номиналы резисторов R3-R20 следует уменьшить до 10 Ом.

Диоды-супрессоры VD1 и VD2 предназначены для гашения перенапряжений во время переходных процессов, сопровождающих включение стабилизатора в сеть.

При правильном монтаже и сборке стабилизатор начинает работать без каких-либо проблем. При непрерывной нагрузке током 4 А на транзисторах VT1-VT9 рассеивается мощность около 60 Вт (по 6 Вт на каждом транзисторе). На каждом из резисторов R3-R11 - по 4 Вт. Совместно стабилизаторы напряжения положительной и отрицательной полярности рассеивают около 180 Вт. Две пары стабилизаторов для питания усилителей левого и правого стереоканалов, установленные на общем акваблоке, рассеивают 360 Вт.

Акваблок состоит из двух отрезков дюралюминиевой шины сечением 100x10 мм и длиной 1000 мм, стянутых винтами по периметру. Для герметизации стыка между шинами применён автомобильный герметик. На внутренней поверхности каждой шины отфрезерованы по две параллельные канавки размерами 960x15x4 мм, по которым течёт охлаждающая вода. Общее сечение водопроводящего канала - 15x8 мм, его суммарная длина - 1920 мм, расход воды - 0,75 л/мин, температура воды на входе акваблока - 24 °C, на выходе - 29 °C. Вода поступает из водопровода через одноступенный фильтр.

Четырёхлетний опыт эксплуатации такой открытой системы водяного охлаждения показал стабильность её тепловых параметров. Но систему можно сделать и закрытой с циркуляцией дистиллированной воды через акваблок и внешний автомобильный радиатор.

Транзисторы VT1-VT18 смонтированы на печатной плате с алюминиевой подложкой, прижатой к акваблоку с применением теплопроводной пасты. Температура поверхности платы - около 34 °C. Транзисторы 2SA1943 и 2SС5200 нагреваются до температуры около 50 °C. Испытания показали, что эта температура в течение трёх часов работы оставалась неизменной.

Описанная система охлаждения компактна, эффективна и абсолютно бесшумна. Она позволяет отводить около киловатта тепловой мощности. В качестве сигнализатора аварийного отсутствия проточной воды в системе в подводящем её трубопроводе установлен датчик давления ДРД-40. Он идеально подходит для стандартной водопроводной сети. При аварийном отключении воды контакты этого датчика размыкаются и отключают стабилизатор от электрической сети.

Кроме того, необходимо установить датчики температуры на одном или нескольких транзисторах 2SA1943, которые, как показала практика, нагреваются сильнее, чем транзисторы 2SС5200. Такие же датчики рекомендуется установить и на трансформаторах.

Автор: В. Федосов, г. Краснодар

 

 

 

10. Радиолюбительский частотомер

 

Вниманию читателей предлагается описание любительского частотомера на микроконтроллере AT89C52-24JC и двух приставок, с помощью которых, помимо измерения частоты и длительности импульсов, можно измерять емкость и индуктивность компонентов.

За последние несколько лет в периодической литературе появилось несколько публикаций, посвященных описанию радиолюбительских частотомеров, построенных на базе однокристальных микро-ЭВМ. Преимущества подобных конструкций очевидны: уменьшается число применяемых микросхем и, соответственно, уменьшаются габариты и потребляемая мощность, простота сборки и регулировки устройства, доступного для повторения даже начинающими радиолюбителями. Кроме того, появляется возможность модернизации и увеличения сервисных функций только за счет изменения управляющей программы.

Частотомер предназначен для применения в радиолюбительской практике. Он позволяет производить измерения:

  • частоты сигнала;
  • периода сигнала;
  • девиации (ухода) частоты сигнала;
  • длительности импульсов.


Частотомер также можно использовать в качестве цифровой шкалы радиоприемной аппаратуры. С помощью дополнительных приставок частотомер может измерять емкость конденсаторов и индуктивность дросселей, катушек.

Основные технические характеристики частотомера:

  • Диапазон измеряемых частот, Гц......1...50·106
  • Время измерения в режиме измерения частоты (максимальная частота сигнала, МГц), с......0,1 и 1 (50) 10(25)
  • Измерение периода в диапазоне частот, Гц......1...50·106
  • Диапазон девиации частоты, Гц......±50·106
  • Длительность измеряемого импульса, мкс......0,1...10000
  • Пределы измерения емкости, мкФ......10-5...500
  • Пределы измерения индуктивности, Гн......1·10-6...2
  • Входное сопротивление, МОм......1
  • Уровень входного сигнала (эффективное значение), В......0,25...10
  • Напряжение питания, В......8...15
  • Ток потребления, не более, мА .....100
  • Габариты, мм......80x58x15


Частотомер (его схема приведена на рис. 1) состоит из компаратора сигнала, переключателя режимов работы, синхронизатора цикла измерения, счетчика импульсов, микроконтроллера, клавиатуры, жидкокристаллического индикатора, стабилизатора питания.


Входной каскад построен на компараторе фирмы Analog Devices AD8561AR (DA1). Этот компаратор имеет типовое значение задержки около 7 нc.

Входной сигнал поступает на разъем ХР1 и поступает на защитную цепочку R1VD1VD2 и компаратор DA1. Резисторы R4, R5 формируют гистерезис компаратора для исключения появления дребезга при медленно меняющихся сигналах. На выходе компаратора сигнал представлен парой противофазных логических уровней, согласованных с уровнями логических микросхем частотомера.

Коммутатор режима работы выполнен на цифровом мультиплексоре DD2. Коммутатор переключает сигналы в соответствии с выбранным режимом работы частотомера. Синхронизатор (элементы DD1.2, DD1.3, DD4) формирует сигналы начала и окончания цикла измерения. Счетчик импульсов (DD3) подсчитывает число импульсов во входном сигнале или импульсы заполнения при измерении длительности импульса.

Микроконтроллер (DD5) фирмы ATMEL AT89C52-24JC управляет всеми элементами устройства: коммутатором режимов работы, индикатором, клавиатурой. Тактовая частота 10 МГц для микроконтроллера задается кварцевым резонатором BQ1. При настройке и поверке частотомера частоту тактирования микроконтроллера подстраивают конденсатором С6 к значению точно 10 МГц с помощью промышленного частотомера.

Сигнал с кварцевого резонатора микроконтроллера (сигнал BF) используется и для измерения длительности импульсов. При этом период следования импульсов заполнения равен 100 нc. Таким образом, погрешность измерения длительности импульса также не превышает этого значения.

Микроконтроллер работает с использованием внутренней памяти программ (вывод 35 DD5 подключен к шине +5В). При включении питания частотомера микроконтроллер устанавливается в исходное состояние перепадом напряжения, передаваемого конденсатором С5.

Клавиатура (кнопки SB1, SB2) используется для выбора режимов работы и параметров частотомера. Кнопкой SB1 ("Режим") выбирают режим работы, кнопкой SB2 ("Параметр") - параметр режима. Например, кнопкой SB1 устанавливают режим "Измерение частоты", а кнопкой SB2 выбирают значение параметра "Время измерения" - 10 с. Примерно через 1 с после выбора режима работы или параметра частотомер автоматически переходит к измерению.

В качестве индикатора применен алфавитно-цифровой LCD-модуль ITM1602ASR с двумя строками по 16 символов. В первой строке отображаются режим работы и параметры частотомера, а во второй строке - измеренное значение. Подстроечным резистором R8 можно отрегулировать контрастность изображения индикатора. Индикатор подключают к разъему XS3 и устанавливают непосредственно на плату. Подключенный через дополнительный кабель индикатор может быть размещен в ином месте по желанию пользователя.

В узле стабилизации напряжения питания применен интегральный стабилизатор DA2. Напряжение питания от внешнего источника подается на разъем ХР2. Конденсаторы С15, С16 - входной фильтр; С13, С14 - выходной фильтр стабилизатора. Конденсаторы С7 - С12 - блокировочные, их устанавливают вблизи микросхем.

В частотомере применены отечественные микросхемы серии КР1533 (импортный аналог - 74ALS). В качестве счетчика импульсов применена микросхема 74НС4040 с максимальной частотой 50 МГц, которая и ограничивает диапазон измерения частоты.

Рассмотрим работу частотомера в режиме измерения частоты входного сигнала.

Сигнал с компаратора (цепь F1) поступает на коммутатор режима работы (вывод 4 DD2). Микроконтроллер выставляет логические уровни сигналов А = 0иВ=1,а затем выдает сигнал START (лог. 1), инициирующий процесс измерения. Триггер DD4.1 переключается и разрешает проходить сигналу на выход коммутатора (вывод 7 DD2) и вход счетчика импульсов (вывод 10 DD3).

Микроконтроллер формирует временной интервал, например, длительностью 1 с (сигнал TW). В течение этого времени разрешена передача входного сигнала с выхода компаратора на счетчик импульсов входного сигнала. Импульсы переполнения счетчика DD3 подсчитывает таймер/счетчик 1 микроконтроллера. После выдержки микроконтроллером заданного интервала компаратор защелкивает свой выход (вывод 5 DAI - LATCH) и счет импульсов входного сигнала прекращается.

Микроконтроллер выставляет логические уровни сигналов А = 1, В = 1 и считывает из счетчика импульсов (DD3) накопленное число с помощью импульсов "досчета" (сигнал CP). Общее число импульсов в счетчике импульсов за выбранный интервал времени (а это и есть частота сигнала) микроконтроллер подсчитывает по формуле

Х·1048576+ Y·4096 + Z

,где X - содержимое старших 8 разрядов таймера/счетчика 1 микроконтроллера;

Y - содержимое младших 8 разрядов таймера/счетчика 1 микроконтроллера;

Z - содержимое счетчика импульсов (DD3).

Если входная частота очень большая, то возможно переполнение счетчика/таймера 1 микроконтроллера. В этом случае к результату, полученному по предыдущей формуле, микроконтроллер прибавляет еще число 268435456.

Рассмотрим работу частотомера на примере измерения длительности импульса положительной полярности.

Сигналы с выхода компаратора (сигнал F1 для положительного импульса или сигнал F2 для отрицательного импульса) поступают на коммутатор режима работы (DD2). Микроконтроллер выставляет логические уровни сигналов А - 0, В - 0. Затем выдается сигнал установки триггера DD4.1 в единичное состояние (сигнал WR/CM). После этого выдается сигнал START (лог. 1), соответствующий началу измерения. Микроконтроллер ожидает переключения триггера DD4.2. Триггер DD4.1 разрешает проходить импульсам заполнения с элемента DD1.1 на выход коммутатора (вывод 7 DD2).

С началом действия импульса входного сигнала импульсы заполнения (сигнал BF) поступают на вход счетчика импульсов (вывод 10 DD3) через элемент DD1.1 и коммутатор. Импульсы переполнения счетчика DD3 подсчитывает таймер/счетчик 1 микроконтроллера. После окончания импульса входного сигнала триггер DD4.1 переключается в обратное состояние и счет импульсов заполнения прекращается. По сигналу END микроконтроллер выставляет сигналы А = 1, В = 1 и считывает из счетчика импульсов (DD3) накопленное значение с помощью импульсов досчета (сигнал CP). Длительность измеряемого импульса микроконтроллер подсчитывает по формуле

(Х·1048576 +Y·4096 + Z)x100

, где

X - содержимое старших 8 разрядов таймера/счетчика 1 -го микроконтроллера;

Y - содержимое младших 8 разрядов таймера/счетчика 1 -го микроконтроллера;

Z - содержимое счетчика импульсов DD3;

100 - период следования заполняющих импульсов, равный 100 нc.

Таким образом, при измерении длительности импульса временными воротами является сам импульс.

Для определения длительности отрицательного импульса микроконтроллер выставит логические уровни сигналов А = 1, В = 0.

Программное обеспечение написано на языке "С" для микроконтроллеров семейства MCS-51.

Конструктивно частотомер выполнен на двусторонней печатной плате (рис. 2), на которой смонтированы все элементы (рис. 3), за исключением индикатора.



На рис. 2 круглые контактные площадки, условно показанные без отверстий, соединяются с соответствующими площадками на обратной стороне платы через металлизированные переходные отверстия. При любительском изготовлении печатной платы металлизацию заменяют тонкими проводниками.


Разъемные соединители - PLS-2, PBS-14, а также панелька PLCC-44 для установки DD5.

Настройка частотомера

После сборки частотомера необходимо сделать три регулировочные операции.

1. Настройку контрастности индикатора выполняют после подачи питания на частотомер регулировкой подстроечного резистора R8.

2. Для установки частоты кварцевого генератора микроконтроллера необходим доступ к конденсатору подстройки частоты. Поэтому при отключенном питании частотомера удаляют с платы модуль индикатора и затем, удерживая кнопку SB1 в нажатом состоянии, включают питание частотомера. При минимальной емкостной связи входа образцового частотомера с точкой BF (рис. 3) подстройкой конденсатора С6 устанавливают частоту генератора точно 10 МГц.

3. Настройку компаратора во входном каскаде выполняют без подачи сигнала на разъем частотомера. После включения питания прибора нужно сначала вывернуть движок резистора R6 в крайнее левое положение, а затем медленно вращать движок вправо до появления на индикаторе надписи "НЕТ СИГНАЛА".

Ниже приведено описание режимов работы частотомера.

Режим цифровой шкалы:

Кнопкой "РЕЖИМ" устанавливают режим "ЦИФРОВАЯ ШКАЛА". Кнопкой "ПАРАМЕТР" выбирают параметр режима - частота тракта ПЧ. Эту частоту можно выбирать из следующих значений: +455 кГц; -455 кГц; +465 кГц; -465 кГц; +500 кГц; -500 кГц.

Знак перед цифровым значением Fпч указывает на операцию, которую выполняет частотомер. Если знак "+", то частота Fпч прибавляется к измеренной частоте, если знак "-", то вычитается. Время измерения частоты в данном режиме равно 0,1 с.

Вид индикатора частотомера в рабочем режиме:



Измерение частоты входного сигнала

Кнопкой "РЕЖИМ" устанавливают режим "ЧАСТОТА", а кнопкой "ПАРАМЕТР" выбирают параметр режима - время измерения. Параметр в секундах может принимать одно из следующих значений: 0,1 с, 1 с; 10 с.

Примерно через 1 с после отпускания кнопки частотомер автоматически перейдет в режим измерений. Выбор нового параметра прерывает текущий цикл измерения и начинает новый с новым значением параметра. Единицы измерения частоты (Гц, кГц, МГц) определяются автоматически, в зависимости от частоты входного сигнала.

Вид индикатора частотомера в рабочем режиме: при частоте входного сигнала до 1 кГц :




при частоте входного сигнала до 1 МГц :




при частоте входного сигнала, равного или выше 1 МГц,:




Символ ">" здесь и далее означает, что частотомер находится в режиме счета импульсов. То есть результат измерения, который в данный момент присутствует на индикаторе, относится к предыдущему циклу измерения.

Измерение периода входного сигнала

Кнопкой "РЕЖИМ" выбирают режим "ПЕРИОД СИГНАЛА". Для этого режима параметры не устанавливают. Примерно через 1 с после отпускания кнопки частотомер автоматически перейдет в режим измерений.

Период Т входного сигнала является обратной величиной относительно его частоты F. Поэтому частотомер сначала измеряет частоту входного сигнала при времени измерения 1 с, а после проведения вычислений выводит результат на индикатор.

Вид индикатора частотомера в рабочем режиме:




Измерение девиации частоты

Кнопкой "РЕЖИМ" выберите режим "ДЕВИАЦИЯ". Для этого режима параметры не устанавливают. Примерно через 1 с после отпускания кнопки частотомер автоматически перейдет в режим измерений.

Девиация (или уход) определяется как разница между текущей и частотой, которая была при начале измерения в этом режиме. При этом уход (девиация) частоты может быть как положительным, так и отрицательным. Поэтому значение девиации на индикатор выводится со знаком. Чтобы начать новое слежение за уходом частоты, нужно нажать на кнопку "ПАРАМЕТР".

Вид индикатора частотомера в рабочем режиме:




Измерение длительности импульса положительной полярности

Кнопкой "РЕЖИМ" выберите режим "ИМПУЛЬС". Кнопкой "ПАРАМЕТР" выберите параметр режима - полярность импульса. Для положительного импульса его длительность обозначена "П", а интервал между импульсами обозначен "О". Примерно через 1 с после отпускания кнопки частотомер автоматически перейдет в режим измерений.

Вид индикатора частотомера в рабочем режиме:




Измерение емкости

При наличии приставки к частотомеру, измеряющему период, можно измерять емкости любых конденсаторов в пределах от 10 пФ до сотен мкФ. Ее схема приведена на рис. 4.

Мультивибратор, собранный на ОУ DA1, генерирует импульсы с периодом, пропорциональным емкости Сх. Это описывается выражением

Тх= 2CхRэ-lп[(R4+R4')/(R4-R4')].

Здесь значение R4' соответствует сопротивлению части подстроечного резистора между движком и нижним по схеме выводом. Если движок резистора R4 установлен так, что ln[(R4+R4')/(R4-R4')] - 0,5, тогда Тх = CхRэ, и при Rэ = 1 МОм значение емкости 10 пФ соответствует длительности периода генерируемых импульсов, равной 10 мкс, а при Rэ = 10 кОм значение 1 мкФ соответствует длительности 10000 мкс.

В приставке находится эталонный конденсатор Сэ (3000...10000 пФ), позволяющий калибровать приставку, а также измерять емкости менее 10 пФ. Точность эталонного конденсатора желательно подобрать с погрешностью не более 0,5...1 %.

Калибровка приставки заключается в выставке на частотомере значения величины эталонного конденсатора подстроечным резистором R2 (10 кОм). Тэ в частотомере должен быть равен 1 мкс (Fэ = 1 МГц).

Из-за наводок младшие разряды могут периодически изменять свое значение. Но для большинства случаев точность измерения емкости вполне удовлетворительна.

Для измерения емкости кнопкой "РЕЖИМ" выбирают режим "ЕМКОСТЬ". Этот режим не имеет параметров.

Примерно через 1 с после отпускания кнопки частотомер автоматически перейдет в режим измерений.

Вид индикатора частотомера в рабочем режиме:




Измерение индуктивности

При наличии приставки (ее схема приведена на рис. 5) можно измерять индуктивности в интервале 1 мкГн...2 Гн.

Принцип измерения на основе соотношения периода гармонических колебаний с индуктивностью и емкостью колебательного контура генератора в приставке:

T2 = LC/25330, где T - в секундах, L - в мкГн, С - в пФ.

Поэтому, если использовать емкость контура, равную 25330 пф, то численное значение индуктивности вычисляется из следующего соотношения:

L = Т2 = 1/F2, где F - частота колебаний.

Для измерения индуктивности частотомером с приставкой кнопкой "РЕЖИМ" выбирают режим "ИНДУКТИВНОСТЬ". Примерно через 1 с после отпускания кнопки частотомер автоматически перейдет в режим измерений. Численные значения показаний соответствуют индуктивности в мкГн.

Вид индикатора частотомера в рабочем режиме:


Приставка состоит из измерительного генератора (VT1-VT5), частота которого определяется емкостью конденсаторов С1, С2 (общей емкостью около 25330 пФ) и индуктивностью, подключаемой к входным клеммам катушки. Для формирования сигнала с уровнем ТТЛ служит триггер Шмитта (VT6, VT7). Амплитуду колебаний стабилизирует цепь на диодах VD1, VD2 и транзисторах VT4, VT5, подключенная к генератору через эмиттерный повторитель на транзисторе VT3.

При указанном значении емкости С1, С2 и измеряемой индуктивности, равной 1 мкГн, частота генерации составит 1 МГц. При индуктивности 2 Гн - 700 Гц. Для перекрытия такого диапазона, особенно в области высоких частот, необходимо подобрать транзисторы VT1, VT2 с коэффициентом передачи тока базы не менее 150. Конденсаторы С1, С2 - К73-17 или аналогичные с малым ТКЕ. В сумме их емкость не должна отличаться от указанной более чем на 1...2%.

На ширину диапазона измерения влияет и транзистор VT5, точнее его коэффициент передачи тока базы. Лучшие результаты получались при использовании транзисторов ГТ311 с коэффициентом усиления 30...50.

Приставка обычно не требует настройки, если выполнены указанные требования. Программное обеспечение к микроконтроллеру доступно по данной ссылке. Программировать микроконтроллер AT89C52-24JC следует через следующий переходник.