КЛАССИФИКАЦИЯ АВТОМАТИЧЕСКИХ РЕГУЛЯТОРОВ

АВТОМАТИЧЕСКИЕ РЕГУЛЯТОРЫ

Управление, сопровождающееся непрерывным контролем, называют регулированием, а параметр, которым необходимо управлять, т. е. регулировать, — регулируемой величиной.

Регулирование, при котором управление осуществляется различными устройвами без вмешательства человека, называют автоматическим регулированием, а совокупность устройств, состоящих из измериельного элемента (первичного преобразователя), исполнительного механизма и регулирующего органа, называют автомашинным регулятором.

Система автоматического регулирования (рис. 1) представ­ит собой совокупность отдельных элементов, направленно действующих друг на друга. В сравнивающем устройстве происходит сравнение текущего значения регулируемой величины X, которое поступает по главной обратной связи, с ее заданным значением X0.


Рис. 1 Схема системы автоматического регулирования

 

КЛАССИФИКАЦИЯ АВТОМАТИЧЕСКИХ РЕГУЛЯТОРОВ

Регуляторы разделяются по следующим признакам.

1.. По способу действия: регуляторы прямого и непрямого (косвенного) действия. У регуляторов прямого действия регули­рующий орган перемещается за счет энергии Самого объекта, воз­действующего на чувствительный элемент. У регуляторов непря­мого действия регулирующий орган перемещается за счет допол­нительного источника энергии (электроэнергия, сжатый воздух, жидкость под давлением).

2. По роду действия: регулятор прерывистого (дискретного) и непрерывного действия.

В регуляторах непрерывного действия непрерывному измене­нию регулируемого параметра соответствует непрерывное пере­мещение регулирующего органа, между входной и выходной ве­личинами существует непрерывная функциональная связь.

В регуляторах прерывистого действия непрерывной функцио­нальной связи нет. Прерывистые системы можно разделить на две основное группы: релейные и импульсные.

Релейной системой автоматического регулирования называется такая система, которая в своем составе среди основных элементов имеет хотя бы один релейный элемент. Под релейным элементом подразумевается такой элемент системы, в котором непрерывному изменению входной величины соответствует скачкоообразное изме-

нение выходной величины, появляющейся лишь при вполне определенных значениях входной величины (электромагнитное реле).

Импульсной системой автоматического регулирования назы­вается такая система, которая в своем составе имеет хотя бы один-импульсный элемент. Импульсный элемент преобразует непрерыв­ное входное воздействие в ряд кратковременных импульсов,появ-ляющихся через определенные промежутки времени.

3. По роду энергии: электрические пневматические, гидравлические, элек­трогидравлические и электропневмати­ческие.

По закону регулирования:

а) пропорциональнее регуляторы, или П-регуляторы (статические);

б) интегральные регуляторы или И-регуляторы (автоматические);

в) пропорционально – интегральные регуляторы, или ПИ-регуляторы (изодромные);

г) пропорционально-дифференциальные регуляторы, или ПД-регуляторы (пропорциональные регуляторы с пред­варением);

д) пропорционально - интегрально-дифференциальные регуляторы, или
ПИД-регуляторы (изодромные регуля­торы с предварением);

По назначению: регуляторы тем­пературы, давления, расхода и т. д.

В зависимости от выполняемой функции: регуляторы соот­ношения, программные, самонастраивающиеся" стабилизиру­ющие.

8. Регулятор температуры прямого действия. Регулятор, у кото­рого регулирующий орган перемещается за счет энергий самого объекта, воздействующего на чувствительный элемент, называется регулятором прямого действия. Системы регулирования, исполь­зующие регуляторы прямого действия, называются системами прямого регулирования.

Рассмотрим работу регулятора температуры прямого действия типа РПД (рис. 1. Этот регулятор состоит из термометрической системы и клапана.

Термометрическая система регулятора представляет собой паровой манометрический термометр, в состав которого входят термобаллон 1, капилляр 2 и сильфон 3. Термометрическая си­стема частично заполнена низкокипящей жидкостью, температура кипения которой ниже нижнего предела регулируемой темпера­туры.

При погружении термобаллона в измеряемую среду в термомет­рической системе устанавливается давление паров рабочей жидкости, величина которого соответствует температуре измеряемой среды. Давление, возникающее в термобаллоне, передается через пар рабочей жидкости по капилляру к сильфону. В сильфоне раз­вивается усилие, пропорциональное его эффективной площади; это усилие уравновешивается усилием пружины 4. Если температура регулируемой среды выше заданного зна­чения, то усилие, развиваемое сильфоном 5, больше усилия пру­жины 4, вследствие чего сильфон сжимается и при помощи штока 5 перемещает золотник 6 регулирующего клапана вниз. При этом проходное сечение клапана и количество нагревающего вещества, проходящего через клапан, уменьшаются; в результате темпера­тура среды понижается и достигает заданного значения. При понижении температуры регулируемой среды сильфон растягива­ется и клапан приоткрывается, увеличивая подачу нагревающего вещества, вследствие чего температура повышается до заданного значения.

 
 
Рис. 1 Регулятор темпе­ратуры прямого действия  

 

 


Регуляторы, которые воз­действуют на регулирующий орган через усилительное устройство и исполнительный механизм, питаемый от внешнего источника энергии, называются регуляторами непрямого действия.

В регуляторе непрямого действия при изменении регулируе­мой величины усилие или энергия, возникающие в чувствитель­ном элементе, приводят в действие впомогательное устройство, перемещающее регулирующий орган за счет энергии посторон­него источника (электрического тока, жидкости под давлением, сжатого воздуха).

Системы регулирования, использующие регуляторы непря­мого действия, называются 'системами непрямого регулирования.

На рис. 1 приведена схема непрямого регулирования уровня жидкости в сосуде. Измерительное устройство (поплавок 1) при помощи рычагов связано с подвижным электрическим контактом.2. Подвижный контакт может замыкаться с одним из неподвижных контактов: Б (больше) и М (меньше). В зависимости от того, с каким из этих контактов замкнется подвижный контакт, элект­родвигатель 3 вращается в ту или другую сторону. Через червяч­ный редуктор и систему рычагов электродвигатель открывает или закрывает регулирующий орган — клапан 4, установленный на линии подвода жидкости Q1 в бак.

Если расход жидкости Q2 из бака увеличится, то уровень воды в в нем уменьшится и поплавок 1 опустится. При этом подвижный контакт 2 коснется верхнего неподвижного контакта Б, электри­ческая цепь замкнется, двигатель включится и будет вращаться в направлении открытия регулирующего клапана 4, тем самым увеличивая приток воды в бак. Работа регулятора будет продол­жаться до тех пор, пока в баке не восстановится заданный уро­вень жидкости я подвижный контакт 2 не установится между неподвижными контактами Б и М, в результате чего цепь двига­теля будет отключена.

В описанном регуляторе непрямого действия перемещение регулирующего органа — клапана — производится электрическим исполнительным механизмом, использующим энергию от внешнего источника.

Регуляторы непрямого действия обладают высокой чувствительностью, развивают большое усилие и позволяют осуществить дистанционное управление регулирующим органом.

 

 
 
Рис. 1 Регулятор уровня непрямого действия