Предел произведения двух функций равен произведению их пределов: .

Доказательство: Пусть , . Тогда и . Следовательно

, .

Выражения в скобках, по свойствам бесконечно малых функций, - бесконечно малая функция. Тогда , т.е. .

3)Предел частного двух функций равен пределу делимого, деленного на предел делителя, если предел делителя не равен: . Доказательство:Пусть , . Тогда и . Тогда . По свойствам бесконечно малых функций, второе слагаемое – бесконечно малая функция.

Поэтому , т.е.

 

10. Теорема о пределе сложной функции (с доказательством).

 

11. Теорема о знакопостоянстве функции, имеющей ненулевой предел ( с доказательством).

Теорема: Если , то существует окрестность точки а, в которой и знак совпадает со знаком значения b.

Доказательство:по условию , т.е. , или справедливы неравенства . Возьмём за число . Тогда , , являются числами одного знака. Следовательно, в силу неравенства , и имеет знак числа b в указанной -окрестности точки а.

 

12. Теорема о предельном переходе в неравенстве (доказательство для функции и последовательности).

13. Теорема о пределе промежуточной функции (доказательство для функции и последовательности).

Теорема Пусть функции и имеет конечный предел А при и пусть тогда Доказательство:

,

,

Рассмотрим , начиная с некоторого номера N и , будут одинакого выполняться . Значит,

Предел промежуточной последовательности

 

14. Первый замечательный предел (с выводом). Второй замечательный предел (вывод для функций с использованием теоремы Вейерштрасса для последовательностей).

Вывести 1 замечательный предел:

Пусть , .Проведем геометрическое доказательство, основанное на очевидном соотношении между тремя площадями: Ясно, что , s2(сектор оab) но

, т.е.

, т.к. .

Второй замечательный предел:

Рассмотрим последовательность , . Покажем, что последовательность ограничена и возрастает. Сначала докажем монотонность. Воспользуемся биномом Ньютона: Полагая, что a=1, b= 1/n получим: Из равенства (*)следует, что с увеличением n число положительных слагаемых в правой части увеличивается. Кроме того, при увеличении n число 1/n — убывает, поэтому величины , (1-1/n),... возрастают. Поэтому последовательность — возрастающая, при этом Покажем, что она ограничена. Заменим каждую скобку в правой части равенства (*) на единицу. Правая часть увеличится, получим неравенство: Усилим полученное неравенство, заменив числа 3,4,5...,n, стоящие в знаменателях дробей, числом 2: Сумму в скобке найдем по формуле суммы членов геометрической прогрессии: Поэтому: Итак, последовательность ограничена, при этом для выполняются неравенства (**) и (***) : Следовательно, на основании теоремы Вейерштрасса последовательность имеет предел, обозначаемый обычно буквой e : Определение: Числом е называется предел последовательности т. е.

15. Сравнение бесконечно малых и бесконечно больших функций. Теоремы об эквивалентных бесконечно малых и бесконечно больших функциях(с доказательством). Выделение главной части.

а) Сравнение бесконечно малых функций

Для определения бесконечно малых и бесконечно больших функций воспользуемся, так называемым сравнением функций. Пусть у нас есть две функции p(x) и q(x), которые стремятся к А при аргументе x стремящемся к А. И будем рассматривать предел их отношения при аргументе x, стремящемся к некоторому числу A. Тогда возможны следующие варианты:

1) , т.е. предел отношения функций существует и он равен нулю, в этом случае говорят, что p(x) бесконечно малая функция более высокого порядка и принято обозначать p(x) = o(q(x)).

2) , т.е. предел отношения функций существует и он равен С - некоторой константе, в этом случае говорят, что p(x) и q(x) бесконечно малые функции одного порядка и принято обозначать p(x) = O(q(x)).

3) Если данный предел: не существует, в этом случае мы ничего не можем сказать о сравниваемых функциях и поэтому говорят, что функции не сравнимы.

4) , т.е. предел отношения функций существует и он равен бесконечности, в этом случае говорят, что g(x) бесконечно малая функция более высокого порядка и принято обозначать q(x) = o(p(x)).

b) Сравнение бесконечно больших функций Также как и в предыдущем пункте будем рассматривать предел отношения двух функций. Только теперь у нас функции стремятся к бесконечности при аргументе x, стремящемся к А. Возможны следующие варианты:

1) , т.е. предел отношения функций существует и равен бесконечности. В этом случае говорят, что p(x) бесконечно большая функция более высокого порядка.

2) , т.е. предел отношения функций существует и равен С - некоторой константе. В этом случае говорят, что p(x) и q(x) бесконечно большие функции одного порядка.

3) , т.е. предел отношения функций существует и равен нулю. В этом случае говорят, что q(x) бесконечно большая функция более высокого порядка.

4) Если данный предел: не существует, в этом случае мы ничего не можем сказать о сравниваемых функциях и поэтому говорят, что функции не сравнимы.

 

16. Непрерывность функции действительного переменного в точке. Теорема о непрерывности сложной функции (с доказательством).

Теорема:

 

17. Точки разрыва и их классификация. Доказательство непрерывности функции многочлена и y=sin x.

Если функция f (x) не является непрерывной в точке x = a, то говорят, что f (x) имеет разрыв в этой точке