Виды отказов и дефектов и их связь с вибропроцессами

Цели и задачи вибродиагностики оборудования.

Методы вибродиагностики направлены на обнаружение и идентификацию таких неисправностей агрегата, которые оказывают влияние на его вибрацию: дефектов роторов, опорной системы и узлов статора, испытывающих либо генерирующих динамические нагрузки.

Целями вибродиагностики являются:

– предупреждение развития дефектов агрегата и сокращение затрат на его восстановление,

– определение оптимальной технологии восстановления работоспособности агрегата, если возникший дефект исключает возможность его нормальной эксплуатации.

Основной задачей вибродиагностики является разделение множества возможных технических состояний агрегата на два подмножества: исправных и не исправных.

Следующей задачей является постановка диагноза, состоящего в определении характера и локализации одного или группы дефектов, соответствующих вибрационному состоянию агрегата.

Одной из задач вибродиагностики является возможное обнаружение дефекта на ранней стадии и прогнозирование его развития во времени.

На основании диагноза определяется оптимальный режим эксплуатации агрегата в условиях возникшей неисправности и технология устранения дефекта и восстановления работоспособности агрегата.

Чем надежней и конкретней диагноз, тем ниже затраты, связанные с восстановлением агрегата.

 

Приемущества и недостатки вибродиагностики.

Преимущества

  • метод позволяет находить скрытые дефекты;
  • метод, как правило, не требует сборки-разборки оборудования;
  • малое время диагностирования;
  • возможность обнаружения неисправностей на этапе их зарождения.

Недостатки

  • особые требования к способу крепления датчика вибрации;
  • зависимость параметров вибрации от большого количества факторов и сложность выделения вибрационного сигнала, обусловленного наличием неисправности [источник не указан 466 дней]
  • низкая точность диагностирования [источник не указан 466 дней]

Основные виды неиспаравностей роторного оборудования.

Виды отказов и дефектов и их связь с вибропроцессами

  • Достоверность оценки состояния агрегата при техническом обслуживании, включающем в качестве необходимой составной части техническое диагностирование, зависит от понимания сущности рабочих процессов, выступающих в качестве носителей диагностической информации, и от знания законов возникновения и развития неисправностей.
  • Отказы и дефекты связаны с вибрационными процессами в оборудовании различным образом, они могут быть вызываемыми вибропроцессами, вызывающими вибропроцессы или изменяющими их. При разработке методик диагностирования полезно выделять характерные стадии развития дефекта (отказа), поскольку каждая из них может характеризоваться своим комплексом диагностических параметров. Обычно различают следующие стадии:
  • появление причин, вызывающих дефект или отказ;
  • инкубационный период (накопление повреждаемости, зарождение дефекта и ранняя стадия развития, вызывающая изменение свойств, иногда трудно обнаруживаемого используемыми методами диагностики);
  • развитый дефект, т. е. дефект, обнаруживаемый методами диагностики, но не вызывающий вторичных повреждений;
  • развитие дефекта, вызывающее вторичные повреждения или изменения в оборудовании, характеризующиеся своими диагностическими параметрами;
  • внезапное или мгновенное разрушение (имеет место не для всех дефектов), которое может вызывать или не вызывать вторичных разрушений.
  • Первые две стадии в большинстве случаев диагностируют по параметрам, характеризующим причины дефекта, длительность и степень их воздействия. Развитый дефект обнаруживают по параметрам, характеризующим степень его развития. Развитие дефекта, вызывающее вторичные повреждения дополнительно обнаруживается по диагностическим параметрам этих повреждений. В задаче диагностики внезапного или мгновенного разрушения, которое необходимо предотвратить при контроле оборудования, следует использовать параметры, характеризующие первые две стадии его развития.
  • В вибродиагностике следует учитывать тот факт, что дефекты на разных стадиях развития могут быть связаны с вибрационными процессами в оборудовании (колебаниями его деталей или динамическими процессами, их взывающими) различным образом, а переход от одной стадии развития к другой может быть постепенным или скачкообразным.
  • Дефекты обычно классифицируют по следующим аспектам, учитываемым при разработке и использовании методов и средств диагностики:
  • по виду разрушения (усталость, износ, ползучесть, коррозия, термодеформации и т. д.);
  • по моментам проявления (в процессе работы, при осмотрах и техническом обслуживании, при разборке);
  • по временному характеру проявления (внезапные, постепенные, сбои, перемежающиеся отказы);
  • по причинам возникновения (конструктивные, технологические, производственные, эксплуатационные, дефекты материала);
  • по степени опасности;
  • по последствиям (отказ, устраняемый при эксплуатации; отказ, ведущий к досрочному выводу оборудования из эксплуатации; отказ, ведущий к происшествию; отказ, ведущий к аварии);
  • по способам устранения (заменой детали, регулировкой, мелким ремонтом, заменой узлов в эксплуатации, доработкой в заводских условиях и т.д.);
  • по связи дефектов и отказов между собой (независимые и зависимые).
  • Рассмотрим основные факторы и процессы, вызывающие прочностные отказы и дефекты оборудования, их связь с вибрационными процессами.[3]
  • 2.4.1 Загруженность деталей оборудования
  • Нагрузки бывают нескольких видов: статические, динамические (переменные и ударные), циклические.
  • Статические нагрузки могут оказывать влияние на вибрации в оборудовании, главным образом в тех случаях, когда они вызывают изменение геометрической формы деталей, например кинематических пар. Кроме того, под действием статических нагрузок могут изменяться частоты собственных колебаний деталей, вследствие увеличения жесткости, например, действие центробежных сил на диски и лопатки турбомашин. При действии достаточно высоких статических нагрузок в течение длительного времени, явления ползучести материала могут привести к изменению геометрической формы деталей и появлению трещин.
  • Циклические нагрузки не вызывают вибраций оборудования, но приводят к явлениям усталости металла, что в свою очередь может оказать влияние на вибрацию.
  • Динамические нагрузки - основная причина колебания деталей агрегатов и их динамической напряженности, приводящей к усталостным поломкам.[3]
  • 2.4.2 Усталость
  • Существуют несколько видов усталостных разрушений деталей: типичная усталость под действием переменных напряжений происходит из-за развития трещины, распространяющейся в материале по экспоненциальному закону; контактно - усталостные разрушения (питтинг, шелушение, усталостное выкрашивание контактных пар), начинающиеся с зарождения язвины или отдельного очага усталостного разрушения и, затем, с увеличением числа язвин относительно быстрого разрушения; коррозионно-усталостные разрушения деталей начинаются с очага коррозии (например, подверженных воздействиям агрессивных газов), служащего началом трещин, после заполнения, которых продуктами коррозии происходит коррозионное растрескивание и разрушение деталей; термическая усталость на начальной стадии сопровождается слабым изменением геометрической формы тела вследствие образования сетки мелких трещин, затем магистральных трещин, приводящих к разрушению под действием динамических напряжений.
  • Под действием переменной нагрузки усталостная долговечность имеет обратно - степенную зависимость от ее значения с показателем степени порядка восьми и более в зависимости от материала.[3]
  • 2.4.3 Связь усталости и вибрации
  • Вибрация вызывает усталостные разрушения деталей, действуя, как переменная нагрузка. При появлении усталостных трещин изменяются собственные частоты колебаний деталей вследствие изменения их жесткости и могут изменяться демпфирование и характер колебаний (например, начинают проявляться эффекты нелинейности), что может вызвать изменение характера вибрации данной детали.
  • Характер изменений при усталостных процессах таков, что существует инкубационный, обычно длительный, период медленного накопления повреждений с постоянной скоростью, после которого происходит резкое увеличение скорости накопления повреждений. Такому закону, очевидно, должно следовать и изменение интенсивности вибрации, связанной с явлениями усталости. Однако при этом следует учитывать возможное изменение частот и форм колебаний вибрирующих деталей - возможны резкие изменения интенсивности колебаний деталей, вошедших в резонанс. Для нормально работающих деталей (исправное состояние) в инкубационном периоде развития усталостных дефектов изменение вибрации происходит с постоянной скоростью (при этом возможно случайное медленное флуктуирующее изменение интенсивности). На стадии быстрого разрушения увеличивается частота случайных флуктуации и их размах (дисперсия), т.к. увеличивается скорость случайных изменений.[3]
  • 2.4.4 Закономерности ползучести
  • В процессе ползучести выделяют три периода: сначала постепенное уменьшение скорости пластической деформации, затем процесс протекает с минимальной постоянной скоростью, причем с ростом напряжения и температуры скорость пластической деформации растет, и при этом продолжительность данного периода с точки зрения эксплуатации агрегата уменьшается, и, наконец, скорость деформации нарастает, пока не наступит разрушение.[3]
  • 2.4.5 Остаточная деформация
  • Нагрузки, вызывающие напряжения, которые превышают предел упругости, могут привести к остаточной деформации и появлению трещин. Остаточные деформации изменяют геометрическую форму и размеры деталей, что влияет на вибрационные процессы, генерируемые взаимодействием деталей (кинематических пар).[3]
  • 2.4.6 Износ
  • Возможны несколько видов износа, которые появляются в связи с одним или несколькими следующими процессами: микросрезанием, пластической или упругой деформацией, возникающей вследствие высоких местных напряжений, поверхностной усталостью при повторяющихся упругих деформациях поверхности, местным перегревом, окислением, забиванием микротрещин смазкой, что является причиной возрастания давления, которое приводит к повреждению поверхностного слоя. Эти процессы могут происходить одновременно и приводить к ниже перечисленным видам износа.
  • Абразивный износ. Возникает вследствие истирания трущихся поверхностей и прямо пропорционален удельному давлению на трущиеся поверхности и пути скольжения. Пример - износ подшипников. Истирание трущихся поверхностей, разделенных смазкой, вызывает струйный износ, а контактирующих (например, при задеваниях) фрикционный.
  • Заедание. Возникает вследствие контакта поверхностей в условиях разрушения масляной пленки. Различают следующие стадии этого процесса: увеличение коэффициента трения из-за нарушения режима смазки, резкий нагрев, разрушение поверхностного слоя, сопровождающееся свариванием металла двух поверхностей. Наиболее часто встречается в зубчатых муфтах и зацеплениях, а также поршневых агрегатах.
  • Усталостный износ (питтинг). Возникает вследствие усталости поверхностного слоя и при относительном скольжении поверхностей и вследствие микрошероховатостей. Наиболее часто встречается в зубчатых парах и подшипниках качения.
  • Коррозионный износ. Возникает вследствие взаимодействия деталей агрегата с агрессивной средой.
  • Кавитационная эрозия. Возникает вследствие локальных гидравлических ударов жидкости в зоне кавитации.
  • В процессе износа выделяют три стадии:
  • приработка, когда изменяется микро - и макроструктура поверхностей и имеет место уменьшение скорости износа;
  • нормальный износ, когда можно принять линейную связь между значением износа и временем;
  • прогрессивный износ, когда имеет место возрастание скорости износа.

Основными факторами, влияющими на значение нормального износа, являются удельное давление и относительная скорость движения трущихся деталей.

Износ деталей кинематических пар приводит к увеличению зазоров в парах, что усиливает проявление динамических сил взаимодействия деталей, приобретающего в некоторых случаях ударный характер, и обогащение вибросигнала шумовыми и импульсными составляющими. Износ может также изменить жесткостные характеристики системы, что влияет на частоты и формы колебаний.

Отказы из-за несовершенства изготовления и сборки оборудования.

Причинами отказов могут быть как эксплуатационные факторы, так и несовершенство изготовления и сборки оборудования. Эти причины весьма многообразны.

Причины отказов, закладываемые при проектировании машины, могут быть следующими: неудачный выбор формы деталей, например, с концентраторами напряжений и резким изменением сечений; неудачный выбор материалов и их сочетаний; недооценка нагрузок и действующих сил; неучет их возможных изменений в процессе эксплуатации машины и т. д.

Причинами отказов, закладываемыми при изготовлении машины, могут быть, например, неудачные допуски, использование бракованных деталей и материалов, нарушения технологии изготовления, неполнота контроля.

Нарушение технологии в процессе сборки - частая причина отказов, например, из-за неправильно установленных зазоров, пятна контакта, нарушения посадок, ослабления затяжки и др.

Другая частая причина - изменения конструкции или технологии, влияние которых на надежность машины трудно определяется при разработке и внедрении и проявляется в ходе эксплуатации машины.