Энергопотери в трансформаторах

Распределительные трансформаторы

Самые малые из встречающихся в энергосистемах трансформаторы, которые обеспечивают подачу промышленным или бытовым потребителям, относятся к распределительным. На рисунке схематично представлена активная часть типичного трехфазного распределительного трансформатора с железным сердечником и медными или алюминиевыми обмотками.

Рисунок 1 – Трехфазный распределительный трансформатор

Энергопотери в трансформаторах

Потери энергии в трансформаторах бывают двух видов:

- Потери холостого хода, или «в железе», т. е. затраты на создание магнитного поля в металлическом сердечнике при подключении трансформатора к сети даже в отсутствие нагрузки.

Изм.
Лист
№ докум.
Подпись
Дата
Лист
КП 13.03.02 09 16 ПЗ  
- Потери нагрузки, которые вызваны сопротивлением обмоток, токами Фуко, циркулирующими при активной работе трансформатора как в сердечнике, так и в корпусе – иначе называемыми «потери в меди».

На самом деле трансформаторы, используемые в энергоснабжении, относятся к разряду механизмов с одним из самых высоких КПД. В них нет подвижных частей, и большие трансформаторы, установленные на электростанциях и в электротранспортных системах, имеют КПД свыше 99,75 %. Распределительные трансформаторы могут иметь КПД чуть меньший, но все равно около 99 %. Однако, несмотря на высокий КПД каждого отдельного трансформатора, потери происходят на каждом участке движения электроэнергии, связанном с ее преобразованием по напряжению. Даже в самых современных сетях потери на трансформаторное преобразование достигают 10 %, причем такие потери выше при малой или, наоборот, высокой нагрузке.

§ Потери в электрических двигателях

В электрическом двигателе при преобразовании одного вида энергии в другой часть энергии теряется в виде теплоты, рассеиваемой в различных частях двигателя. В электрических двигателях имеются потери энергии трех видов: потери в обмотках, потери в стали и механические потери. Кроме того, имеются незначительные добавочные потери.

Потери энергии в асинхронном двигателе рассмотрим при помощи его энергетической диаграммы (рис. 1). На диаграмме Р1 - мощность, подводимая к статору двигателя из сети. Основная часть Рэм этой мощности, за вычетом потерь в статоре, передается электромагнитным путем на ротор через зазор.

 

 

Изм.
Лист
№ докум.
Подпись
Дата
Лист
КП 13.03.02 09 16 ПЗ  
Рэм называется электромагнитной мощностью.

Потери мощности в статоре складываются из потерь мощности в его обмотке Pоб1 = m1 х r1 х I12 и потерь в стали Pс1. Мощность Pс1 является потерями на вихревые токи и на перемагничивание сердечника статора.

Потери в стали имеются и в сердечнике ротора асинхронного двигателя, но они невелики и могут не приниматься во внимание. Это объясняется тем, что скорость вращения магнитного потока относительно статора n0 во много раз больше скорости вращения магнитного потока относительно ротора n0 - n, если скорость вращения ротора асинхронного двигателя n соответствует устойчивой части естественной механической характеристики.

§ Общие потери

Подробные прогностические и оценочные данные по потерям за период 1970–2010 годов. Общая величина потерь составляет около 150 млрд кВт•ч, или около 6,5 % от всей произведенной электроэнергии, что примерно равно работе вхолостую 15 крупных электростанций. Но величина потерь устойчиво снижалась с уровня 7,5 % в 1970 году. Наименьшие потери в Германии, где данной проблемой системно занимались с 70-х годов. В свою очередь, в странах Восточной Европы средние величины потерь примерно в 2 раза выше средних значений Западной Европы. Так, в бывшей ГДР в 1992 году величина потерь составляла около 10,2 % против 4,7 % в ФРГ, хотя уже к 1995 году она снизилась до уровня 9,5 %.

§

Изм.
Лист
№ докум.
Подпись
Дата
Лист
КП 13.03.02 09 16 ПЗ  
Потери в системах распределения

Более 40 % общих потерь в энергосистемах (исключая потребителей) приходится на распределительные трансформаторы. Остальное приходится на кабели и ЛЭП.

Современные распределительные сети весьма сложны. Трансформаторы могут находиться или под полной нагрузкой весь год, или, наоборот, почти ненагруженными, выполняя резервную роль или из-за просчета в планировании спроса. При проектировании распределительной сети рассчитываются различные факторы: оптимизация нагрузки пространственная, по времени суток и сезонам, необходимость дублирования и, наоборот, обходных путей на случай непредвиденных обстоятельств. Решение задачи по оптимизации осложняется тем, что не все переменные величины являются достоверными на момент проектирования, а также тем, что изменение существующей инфраструктуры может оказаться чрезвычайно дорогим. Однако современные технологии управления сетями включают даже такое мероприятие, как периодическое временное перемещение распределительных трансформаторов на другие участки сети при изменении нагрузок или эксплуатация в режиме перегрузки, что не может не сказаться на величинах потерь.

Системы энергоснабжения

Принципиально схема организации системы энергоснабжения во всем мире одинакова, а рознятся лишь значения применяемого высокого напряжения. Так, в Европе напряжение на участке производства на электростанции составляет 10–20 кВ переменного тока с последующим увеличением до 275–400 кВ для транспортировки при помощи ЛЭП.

В районе потребления производится понижение напряжения до величины 110–150 кВ. При поставке энергии крупным промышленным предприятиям, возможно, величина напряжения не меняется, а при подводе к местным пунктам распределения напряжение снижается до величины 10–20 кВ и

Изм.
Лист
№ докум.
Подпись
Дата
Лист
КП 13.03.02 09 16 ПЗ  
в таком виде поставляется на небольшие промышленные объекты, школы, больницы и другие общественные объекты, где преобразование будет осуществлено в соответствии с потребностями.

И, в конце концов, на распределительных подстанциях вблизи точек потребления производится последнее преобразование – понижение величины напряжения до стандартного во всей Европе уровня 400/230 В. Такая схема организации транспортировки и распределения с четырьмя уровнями напряжения является стандартной независимо от того, используется ли при этом подземные или воздушные способы организации подачи.

Одной из причин того, что именно такая схема была выбрана в качестве стандартной, является опыт, доказывающий ее оптимальность с точки зрения затрат, баланса спроса и предложения и величины (минимальной) потерь. При этом фактическое положение вещей несколько иное. Так, продолжают функционировать созданные ранее сети с промежуточными величинами напряжения, такими как 66, 50 кВ и др. Их доля медленно, но неуклонно снижается по мере обновления основных фондов, но все еще составляет значительную величину.