Подходы к исследованию систем.

Важным для системного под­хода является определение структуры системы — совокупности связей между элементами системы, отражающих их взаимодейст­вие. Структура системы может изучаться извне с точки зрения состава отдельных подсистем и отношений между ними, а также изнутри, когда анализируются отдельные свойства, позволяющие системе достигать заданной цели, т. е. когда изучаются функции системы. В соответствии с этим наметился ряд подходов к ис­следованию структуры системы с ее свойствами, к которым следует, прежде всего, отнести структурный и функциональный.

При структурном подходе выявляются состав выделенных эле­ментов системы S и связи между ними. Совокупность элементов и связей между ними позволяет судить о структуре системы. После­дняя, в зависимости от цели исследования, может быть описана на разных уровнях рассмотрения. Наиболее общее описание струк­туры - это топологическое описание, позволяющее определить в самых общих понятиях составные части системы и хорошо фор­мализуемое на базе теории графов.

Организация представляется в виде сложной системы, обладающей определенными свойствами, которая может быть описана некоторыми графическими, математическими и другими моделями. Таким образом, в данной модели признается взаимосвязь и взаимозависимость компонентов системы между собой, а также с внешней средой, т.е. организация рассматривается как единство ее составных частей, неразрывно связанных с внешним миром.

При таком подходе эффективность работы организации зависит от факторов, находящихся в двух сферах: внешней: из нее организация получает все виды ресурсов, включая информацию; внутренней: ее сильные и слабые стороны создают определенные предпосылки для преобразования ресурсов в продукцию и услуги.

Менее общим является функциональное описание, когда рас­сматриваются отдельные функции, т. е. алгоритмы поведения систе­мы, и реализуется функциональный подход, оценивающий функции, которые выполняет система, причем под функцией понимается свойство, приводящее к достижению цели. Поскольку функция от­ображает свойство, а свойство отображает взаимодействие системы S с внешней средой Е, то свойства могут быть выражены в виде либо некоторых характеристик элементов и подсистем Si систе­мы, либо системы S в целом.

При наличии некоторого эталона сравнения можно ввести коли­чественные и качественные характеристики систем. Для количест­венной характеристики вводятся числа, выражающие отношения между данной характеристикой и эталоном. Качественные харак­теристики системы находятся, например, с помощью метода экс­пертных оценок.

Проявление функций системы во времени S(t), т.е. функци­онирование системы, означает переход системы из одного состояния в другое, т. е. движение в пространстве состояний Z. При эксплу­атации системы S весьма важно качество ее функционирования, определяемое показателем эффективности и являющееся значением критерия оценки эффективности. Существуют различные подходы к выбору критериев оценки эффективности. Система S может оце­ниваться либо совокупностью частных критериев, либо некоторым общим интегральным критерием.

Следует отметить, что создаваемая модель М с точки зрения системного подхода также является системой, т. е. S'=S'(M), и мо­жет рассматриваться по отношению к внешней среде Е.

Простой подход к изучению взаимосвязей между отдельными частями модели предусматривает рассмотрение их как отражение связей между отдельными подсистемами объекта. Такой классичес­кий подход может быть использован при создании достаточно простых моделей. Процесс синтеза модели М на основе классичес­кого (индуктивного) подхода: реальный объект, подлежащий моделированию, разбивается на отдель­ные подсистемы, т. е. выбираются исходные данные Д для моделирования и ставятся цели Ц, отображающие отдельные сто­роны процесса моделирования. По отдельной совокупности исход­ных данных Д ставится цель моделирования отдельной стороны функционирования системы, на базе этой цели формируется некото­рая компонента К будущей модели. Совокупность компонент объ­единяется в модель М.

Таким образом, разработка модели М на базе классического подхода означает суммирование отдельных компонент в единую модель, причем каждая из компонент решает свои собственные задачи и изолирована от других частей модели. Поэтому классичес­кий подход может быть использован для реализации сравнительно простых моделей, в которых возможно разделение и взаимно неза­висимое рассмотрение отдельных сторон функционирования реаль­ного объекта. Для модели сложного объекта такая разобщенность решаемых задач недопустима, так как приводит к значительным затратам ресурсов при реализации модели на базе конкретных программно-технических средств. Можно отметить две отличитель­ные стороны классического подхода: наблюдается движение от частного к общему, создаваемая модель (система) образуется путем суммирования отдельных ее компонент и не учитывается возник­новение нового системного эффекта.

С усложнением объектов моделирования возникла необхо­димость наблюдения их с более высокого уровня. В этом случае наблюдатель (разработчик) рассматривает данную систему S как некоторую подсистему какой-то метасистемы, т. е. систе­мы более высокого ранга, и вынужден перейти на позиции но­вого системного подхода, который позволит ему построить не только исследуемую систему, решающую совокупность задач, но и создавать систему, являющуюся составной частью метасисте­мы.

Системный подход позволяет решить проблему построения сложной системы с учетом всех факторов и возможностей, пропорциональных их значимости, на всех этапах исследования системы S' и построения модели М'. Системный подход означает, что каждая система S является интегрированным целым даже тогда, когда она состоит из отдельных разобщенных подсистем. Таким образом, в основе системного подхода лежит рассмотрение системы как интегрированного целого, причем это рассмотрение при разработке начинается с главного — формулировки цели функционирования. На основе исходных данных Д, которые известны из анализа внешней системы, тех ограничений, которые накладываются на систему сверху либо, исходя из возможностей ее реализации, и на основе цели функционирования формулируются исходные требования Т к модели системы S. На базе этих требований формируются ориентировочно некоторые подсистемы П, эле­менты Э и осуществляется наиболее сложный этап синтеза — выбор В составляющих системы, для чего используются специальные критерии выбора КВ.

При моделировании необходимо обеспечить максимальную эффективность модели системы, которая определяется как некоторая разность между какими-то показателями результатов, полученных в итоге эксплуатации модели, и теми затратами, которые были вложены в ее разработку и создание.