Конструкция и принцип действия пьезоэлектрических микродвигателей

В настоящее время известно более 50 различных конструкций ПМД. Рассмотрим некоторые из них.

 

 

 

 

К неподвижному пьезоэлементу (ПЭ)- статору - прикладывается переменное трехфазное напряжение (рис. 7.1). Под действием электрического поля конец ПЭ последовательно изгибаясь в трех плоскостях, описывает круговую траекторию. Штырь, расположенный на подвижном конце ПЭ, фрикционно взаимодействует с ротором и приводит его во вращение.

 

 

Большое практическое значение получили шаговые ПМД (рис. 7.2.). Электромеханический преобразователь, например, в виде камертона 1 передает колебательные движения стержню 2, который перемещает ротор 3 на один зубец. При движении стержня назад собачка 4 фиксирует ротор в заданном положении.

Мощность описанных выше конструкций не превышает сотые доли ватта, поэтому использование их в качестве силовых приводов весьма проблематично. Наиболее перспективными оказались конструкции, в основе которых лежит принцип весла (рис. 7.3).

 

 

Вспомним, как движется лодка. За время, пока весло находится в воде, его движение преобразуется в линейное перемещение лодки. В паузах между гребками лодка движется по инерции.

Основными элементами конструкции рассматриваемого двигателя являются статор и ротор (рис.7.4). На основании 1 установлен подшипник 2. Ротор 3, выполненный из твердого материала (сталь, чугун, керамика и пр.) представляет собой гладкий цилиндр. Неотъемлемой частью ПМД является акустически изолированная от основания и оси ротораэлектромеханическая колебательная система - осциллятор (вибратор). В простейшем случае он состоит из пьезопластины 4 вместе с износостойкой прокладкой 5. Второй конец пластины закреплен в основании с помощью эластичной прокладки 6 из фторопласта, резины или другого подобного материала. Осциллятор прижимается к ротору стальной пружиной7, конец которой через эластичную прокладку 8 давит на вибратор. Для регулирования степени прижатия служит винт 9.

Чтобы объяснить механизм образования вращающего момента, вспомним маятник. Если маятнику сообщить колебания в двух взаимно перпендикулярных плоскостях, то в зависимости от амплитуд, частоты и фаз возмущающих сил его конец будет описывать траекторию от круга до сильно вытянутого эллипса. Так и в нашем случае. Если подвести к пьезопластине переменное напряжение определенной частоты, ее линейный размер будет периодически изменяться: то увеличиваться, то уменьшаться, т.е. пластина будет совершать продольные колебания (рис. 7.5,а).

 

При увеличении длины пластины ее конец вместе с ротором переместится и в поперечном направлении (рис. 7.5,6). Это эквивалентно действию поперечной изгибающей силы, которая вызывает поперечные колебания. Сдвиг фаз продольных и поперечных колебаний зависит от размеров пластины, рода материала, частоты питающего напряжения и в общем случае может изменяться от 0° до 180°. При сдвиге фаз, отличном от 0° и 180°, контактная точка движется по эллипсу. В момент соприкосновения с ротором пластина передает ему импульс движения (рис. 7.5,в).

Линейная скорость вращения ротора зависит от амплитуды и частоты смещения конца осциллятора. Следовательно, чем больше напряжение питания и длина пьезоэлемента, тем больше должна быть линейная скорость вращения ротора. Однако не следует забывать, что с увеличением длины вибратора, уменьшается частота его колебаний.

Максимальная амплитуда смещения осциллятора ограничивается пределом прочности материала или перегревом пьезоэлемента. Перегрев материала свыше критической температуры - температуры Кюри, приводит к потере пьезоэлектрических свойств. Для многих материалов температура Кюри превышает 250 С, поэтому максимальная амплитуда смещения практически ограничивается пределом прочности материала. С учетом двукратного запаса по прочности принимают Vp = 0,75 м/с.

Угловая скорость ротора ω = 2VP/DP, где Dp - диаметр ротора.

Отсюда частота вращения в оборотах в минуту

N = 60VP/(πDp).

Если диаметр ротора Dp= 0,5 - 5 см, то n= 3000 - 300 об/мин.Таким образом, изменяя только диаметр ротора, можно в широких пределах изменять частоту вращения машины.

Уменьшение напряжения питания позволяет снизить частоту вращения до 30 об/мин при сохранении достаточно высокой мощности на единицу массы двигателя. Армируя вибратор высокопрочными сапфировыми пластинами, удается поднять частоту вращения до 10000 об/мин. Это позволяет в широкой области практических задач выполнять привод без использования механических редукторов.