Какой же механизм лежит в основе повышения тренированности спортсмена?

Если исходить из концепции Меерсона об адаптации, то воз­растание активности функционирования работающих систем при сис­тематической спортивной тренировке приводит к формированию в них структурных изменений, которые принципиально увеличивают мощ­ность систем, ответственных за адаптацию к нагрузке.

Активирующее влияние увеличенной функ­ции на структуру органа происходит через генетический аппарат клетки (ГА). Взаимосвязь между функцией и ГА является двусторонней. Прямая связь состоит в том, что ГА через систему РНК "делает структуры", а структуры "делают" функцию. Обратная связь состоит в том, что "интенсивность функционирования структур" - количество функции, которое приходится на единицу массы органа; каким-то образом управляет активностью генетического аппарата. Характерно, что пока "функции тесно в структуре", до тех пор будет происходить гипертрофия и увеличение массы органа. Количе­ство функции через ГА стимулирует структурные изменения органа. Увеличенная структура обеспечивает более высокую функцию, что и составляет основу роста тренированности. Постоянное увеличение физических нагрузок - залог повышения тренированности спортсмена, снижение тренировочных нагрузок, приводящее к уменьшению количества функции выполняемое 1 г ткани, соответствует ситуации, когда функции слишком "прос­торно в структуре", в результате чего снижается интенсивность синтеза белков с последующим устранением избытка структуры.

Для того, чтобы повысить уровень специальной работоспособ­ности, необходимо, чтобы каждая последующая работа начиналась на фоне повышенной работоспособности. Лишь БФН-нагрузки вызывающие сдвиги в рабо­тающих системах на грани физиологической нормы, углубляющие величину этих сдвигов до умеренной перегрузки" - стимулируют "резе­рвные мощности" работающих систем.

Особенности морфофункционального состояния разных систем организма, возникающие при спортивной тренировке, называютсяфизиологическими показателями тренированности. Различают показателями тренированности в состоянии мышечного покоя, при выполнении стандартных нагрузок и нагрузок предельной мощности.

2. Показатели тренированности в состоянии покоя.

Центральная нервная система. Систематическая мышечная деятельность сопровождается повы­шением лабильности нервных клеток, активности окислительных и некоторых других ферментов. У тренированных, особенно к скоростной работе, увеличена подвижность нервных процессов. Это проявляется в укорочении скры­того периода двигательных реакций, уточнении дифференцировок и повышении скорости переработки информации. Для спортсменов-стайе­ров характерна высокая уравновешенность нервных процессов.

Двигательный аппарат. Морфологическкие изменения. Костная ткань утолщается, на костях образуются шероховатости, выступы, увеличиваются поперечные раз­меры костей, утолщается корковый слой, что способствует увеличе­нию механической прочности костей.

Увеличивается масса и объем скелетных мышц, особенно выполняющих силовые и статические напряжения, что сопровождается увеличением удельного веса тела. Этому способствуют потери воды и жира при физических наг­рузках. Гипертрофия скелетных мышц сопровождается улучшением их кровоснабжения. Увеличивается количество капилляров в скелетных мышцах.

Биохимические сд­виги: а) повышается содержание белков саркоплазмы и сократитель­ного белка миофибрилл-миозина; б) увеличивается количество миоглобина, что повышает кисло­родную емкость мышц и способствует интенсификации окислительных процессов;

Функциональные сд­виги: а) повышается возбудимость и лабильность мышц; б) повышается сила мышц; б) улучшается способность мышц к быстрому расслаблению; г) у тренированных твердость мышцы при произвольном напряжении больше, а при расслаблении меньше, чем у нетренированных.

Система крови. С ростом тренированности увеличивается общий объем крови, содержание в ней эритроцитов и гемоглобина, стано­вится больше кислородная емкость крови.

Лейкоцитарная формула у тренированных, особенно у стайеров, изменена в сторону увеличения количества лимфоцитов.

В плазме крови повышается мощность буферных систем, предо­храняющих кровь от резких сдвигов РН в кислую сторону. Щелочной резерв крови у спортсменов увеличен.

Обмен веществ и энергии. При нормальном питании у спортсме­нов обычно наблюдается азотистое равновесие. В тренированном ор­ганизме увеличены запасы углеводов, что очень важно для повышения работоспособности. Запасы жира относительно уменьшены.

Основной обмен находится в пределах стандартных величин или несколько понижен.

Дыхательная система. У тренированных спортсменов хорошо раз­виты дыхательные мышцы, увеличена жизненная емкость легких (ЖЕЛ) и максимальная вентиляция легких ( МВЛ). Наибольшей величины этот показатель достигает у специализирующихся в видах спорта цикли­ческого характера. МВЛ у тренированных спортсменов составляет 150-250 л/мин. Этот показатель более изменчив, чем ЖЕЛ, и в процессе роста тренированности повышается.

Рост тренированности сопровождается уменьшением частоты ды­хания в покое до 8-10 в 1 мин и увеличением глубины дыхания до 700-800 мл .Минутный объем дыхания (МОД) у спортсменов изменяется незначительно и составляет 6-9 л.

Потребление 02 в состоянии покоя в процессе тренировки, как правило, почти не изменяется.

Сердечно-сосудистая система (ССС). Адаптивные изменения проявля­ются в виде: а) гипертрофии мышечных волокон; б) васкуляризации; в) повышении количества миоглобина, гликогена; г) увеличении адренэргической чувствительности мышечных волокон; д) брадикардии; е) синусовой аритмии; ж) уменьшении систолического (СО) и минут­ного объема (МОК) кровообращения; з) изменении показателей ЭКГ: снижение зубца Р, увеличение зубцов -Р,Т, смещении сегмента Т выше изолинии.

Гипертрофия миокарда и брадикардия в большей степени выраже­ны у тренирующихся к длительной циклической работе. У трениро­ванных спортсменов брадикардия нередко сочетается с синусовой аритмией, что свидетельствует о способности сердца быстро адапти­роваться к изменяющимся условиям деятельности.

Показатели артериального давления (АД) у спортсменов в преде­лах возрастных норм. С ростом тренированности наблюдается тенден­ция к повышению, особенно диастолического, что обусловлено умень­шением потребности тканей в кровоснабжении.

3. Физиологические показатели тренированности при стандартных нагрузках.

Стандартная нагрузка - это непредельная нагрузка, доступная для всех испы­туемых.

У тренированного человека: 1) более короткий период врабатывания; 2) при работе более низкий уровень физиологических процессов; 3) восстановление заканчивается относительно быстрее.

Для определения физической работоспособности используются различные методы. Наибольшее распространение получили тесты: проба PWC170, гарвадский тест, степ-тест, тест на тредмилле.

Тест PWC170 является "субмаксимальной" функциональной пробой и поз­воляет оценить общую физическую работоспособность. Чем больше мощность работы тем выше физическая работоспособность.

По этой пробе выполняются две 5- минутные нагрузки умерен­ной интенсивности, разделенные трехминутным интервалом отдыха. В конце каждой нагрузки сосчитывается ЧСС. Мощность второй наг­рузки определяется по специальной таблице и должна быть такой, чтобы величина ЧСС не была больше 170 уд/мин, а разница между величинами ЧСС в конце первой и второй нагрузок составляла 30-40 уд/мин.

Показатель РWС170 рассчитывается по формуле РWC170 = M1 + (М2 - M1)*(170-f1/f2-f1), где М1 и М2 - мощность 1-й и 2-й нагрузок (кгм/мин), f1 и f2 -частота сердцебиения в конце 1-й и 2-й нагрузок.

Важным фактором, определяющим уровень физической работоспо­собности, являются аэробные возможности организма, оцениваемые по величине МПК.

Если известна величина PWC170, то показатель МПК можно рассчитывать по формулам: для трениро­ванных лиц - МПК= 2,2 * PWC170 + 1070

для нетренированных - МПК = 1,7 * РWС170 + 1240

W/ von Dobeln et al. предложили следующую формулу для опре­деления МПК:

maxVO2= 1.29

где N- нагрузка на велоэргометре (кгм/мин); f- ЧСС в конце нагрузки; Т - возраст обследуемого; е - основание натурального логарифма (2,718....).

У спортсменов-стайеров высокой квалификации МПК составля­ет 5-6 л/мин' (на 1 кг веса-83-85 мл/мин). Максимальные величины этого показателя у спортсменов достигают почти 7 л/мин (или 90 мл/мин/кг). У лиц не занимающихся спортом, эта величина не превы­шает 3-3,5 л/мин (менее 40 мл/мин/кг).

Известно, что в определенной зоне мощности работы имеется прямая зависимость между потреблением кислорода и сердечным рит­мом. Поэтому о мощности нагрузок и потреблении кислорода обычно судят косвенно по частоте сердцебиений.

Большинство исследователей считают, что при частоте сердце­биений 180-190 уд/мин. Потребление кислорода составляет около 90-100% МПК. Работа при такой частоте сердцебиений очень тяжела. Длительно её могут выполнять лишь хорошо тренированные спортсме­ны. В связи с этим для оценки уровня выносливости спортсмена пред­ложен тест, который заключается в определении длительности работы при сердечном ритме 180 уд в 1 мин, выполняемой без снижения мощнос­ти, что также отражает возможность спортсмена поддерживать потребление кислорода на уровне близком к его МПК.