Протокол распределения меток LDP

 

В сети MPLS в отличие от сетей связи Х.25, FR, ATM (VPI/VCI) с виртуальными каналами отсутствует фаза установления соединения по сообщению запроса пользователя.

Метки в коммутируемом по меткам тракте LSP назначаются с помощью протокола распределения меток LDP (Label Distribution Protocol), причём существуют разныe способы такого распределения. Процедуры протокола LDP позволяют создать тракт LSP. Создание LSP означает создание таблиц коммутации по меткам во всех маршрутизаторах этого LSP. Функция протокола LDP состоит в частности, в определении каждой привязки «FEC - метка» в каждом LSR тракта LSP. Один из вариантов работы LDP состоит в следующем. При загрузке маршрутизатора выявляется, для каких маршрутов он является пунктом назначения (например, какие хосты находятся в его локальной вычислительной сети). Для них создаётся один или несколько FEC и каждому из них выделяется метка, значение которой сообщается соседним LER. Эти LER. в свою очередь, заносят эти метки в свои таблицы пересылки и посылают новые метки своим соседним маршрутизаторам. Процесс продолжается до тех пор пока все маршрутизаторы не получат данные о маршрутах. По мере формирования путей могут резервироваться ресурсы, что позволяет обеспечить надлежащее качество обслуживания. Протокол LDP является протоколом прикладного уровня и использует оба протокола транспортного уровня - UDP и TCP (рис. 15.7).

 


Рис. 15.7. Стек протоколов при обмене сообщениями по протоколу LDP

 

Протокол LDP работает с использованием транспортного уровня по протоколу UDP только для передачи сообщения обнаружения DISCOVERY. При этом используются сообщения многоадресной рассылки Hello для получения информации о смежных с ним LSR. После обмена этими сообщениями устанавливается TCP-соединение и сеанс LDP с этими маршрутизаторами. Теперь MPLS позволяет LSR запросить у смежного LSR информацию о привязке «FEC-метка». Такой режим называется нисходящее распределение меток по требованию. Для этого LSR запрашивает метку, передав сообщение Label Request. В последнее сообщение входит FEC, для которого запрашивается метка. Если сообщение Label Request поступает в выходной граничный маршрутизатор, то в нем содержится метка, которая имеет локальное значение на участке между входным и соседним с ним вышестоящим маршрутизатором. Если на всех следующих далее вышестоящих LSR успешно произойдет привязка меток к FEC, то после обработки во входном LER сообщения Label Mapping, полученного от соседнего с ним нижестоящего маршрутизатора, маршрут для тракта LSP будет создан.

Назначение меток производится в сторону отправителя трафика, то есть противоположную направлению трафика. Такой LSR, где назначается метка, называется нижним (расположен «ниже по течению»), а расположенный «выше по течению» верхним LSR. Метка всегда локальна, то есть обозначает некоторый FEC для пары маршрутизаторов, между которыми имеется прямая или коммутируемая связь. Напомним, что значения идентификатора виртуального пути VPI и виртуального канала VCI в сети ATM являются также локальными. Пересылка пакета данных MPLS с FEC, соответствующим установленной метке, производится от верхнего LSR к нижнему LSR. Для пересылки пакетов данных того же FEC к следующему маршрутизатору LSR используется другая метка, идентифицирующая этот FEC для новой пары маршрутизаторов, в которой маршрутизатор, бывший в предыдущей паре нижним, приобретает статус верхнего, а статус нижнего получает второй маршрутизатор этой новой пары. Отсюда ясно, что каждый маршрутизатор MPLS-сети, должен хранить соответствие между входящими и исходящими метками для всех FEC, которыми он оперирует. Напомним, что длина поля метки составляет 20 бит и означает, что маршрутизатор одновременно может оперировать 220метками, которым соответствует определённые FEC.


Инжиниринг трафика

 

Инжиниринг трафика ТЕ (Traffic Engineering) представляет функции мониторинга и управления трафиком с тем, чтобы обеспечить нужное качество обслуживания путём рационального использования сетевых ресурсов за счет сбалансированной их загрузки. Этому английскому термину ТЕ соответствует управление разнотипным трафиком в MPLS, отмечая связь рассматриваемых здесь механизмов с задачей обеспечивать разное качество обслуживания QoS трафика разных типов.
Принятая в MPLS технология ТЕ, позволяет снять ограничения, присущие протоколам маршрутизации в IP-сетях. Задача максимального использования ресурсов для IP-сетей, лежащих в основе Интернета, не была первоочередной, т.к. Интернет не считался долгое время коммерческой сетью. Поэтому в сетях MPLS необходимо было изменить традиционные подходы к выбору маршрутов.
Известно, что все протоколы маршрутизации (RIP, OSPF и другие), выбирают для трафика, направленного в определенную сеть, кратчайший маршрут в соответствии с некоторой метрикой. Выбранный путь может быть более рациональным, например, если в расчёт метрики принимается номинальная пропускная способность каналов связи и менее рациональным, если учитывается только количество промежуточных маршрутизаторов (хопов) между исходной и конечной подсетями. Однако в любом из случаев выбирается единственный маршрут, даже если существует несколько альтернативных путей. Примером неэффективности является IP-сеть сеть с топологией, приведённой на рисунке 15.8. Недостаток методов маршрутизации трафика в IP - сетях заключается в том, что пути выбираются без учета текущей загрузки ресурсов сети. Даже если кратчайший путь уже перегружен, пакеты всё равно посылаются по этому пути. Так, в сети, представленной на рисунке 15.8, верхний путь будет продолжать использоваться даже тогда, когда его ресурсов перестанет хватать для обслуживания трафика от А к Е, а нижний путь будет простаивать, хотя, возможно, ресурсов маршрутизаторов В и С хватило бы для более качественной передачи трафика. Отсюда видна неэффективность методов распределения ресурсов сети - одни ресурсы работают с перегрузкой, а другие не используются вовсе.


Рис. 15.8. Неэффективность кратчайшего пути

Применение в MPLS механизма инжиниринг трафика ТЕ позволяют решить эту проблему, указав два разных пути от маршрутизатора А к маршрутизатору Е, то есть кроме А-В-Е маршрут A-C-D-E. ТЕ лучше использует сетевые ресурсы за счёт перевода части трафика с более загруженного на менее загруженный участок сети. При этом достигается более высокое качество обслуживания трафика, поскольку уменьшается вероятность перегрузки в сети. Кроме того, для услуг, которые требуют выполнения заданных норм качества обслуживания QoS (например, заданного коэффициента потерь пакетов, задержки, джиттера) инжиниринг трафика позволяет обеспечить надлежащее QoS путём назначения явно определённых маршрутов.
В технологии MPLS TE пути LSP называют TE-туннелями. TE-туннели не прокладываются распределенным способом вдоль путей, находимых обычными протоколами маршрутизации независимо в каждом отдельном устройстве LSR. Вместо этого TE-туннели прокладываются в соответствии с техникой маршрутизации от источника, когда централизовано задаются промежуточные узлы маршрута. В этом отношении TE-туннели подобны PVC-каналам в технологиях АТМ и Frame Relay. Инициатором задания маршрута для TE-туннеля выступает начальный узел туннеля, а рассчитываться такой маршрут может как этим же начальным узлом, так и внешней по отношению к сети программной системой или администратором.

MPLS TE поддерживает туннеля двух типов:

· Строгий TE-туннель – определяет все промежуточные узлы между двумя пограничными устройствами;

· Свободный TE-туннель – определяет только часть промежуточных узлов от одного пограничного устройства до другого, а остальные промежуточные узлы выбираются устройством LSR самостоятельно.

На рисунке 15.9 показаны оба типа туннелей. Туннель 1 является примером строгого туннеля, при его задании внешняя система (или администратор сети) указана как начальный и конечный узлы туннеля, так и все промежуточные узлы, то есть последовательность IP-адресов для устройств LER1, LSR1, LSR2, LSR3, LSR4, LER3. Таким образом, внешняя система решила задачу инжиниринга трафика, выбрав путь с достаточной неиспользуемой пропускной способностью. При установлении туннеля 1 задается не только последовательность LSR, но и требуемая пропускная способность пути. Несмотря на то, что выбор пути происходит в автономном режиме, все устройства сети вдоль туннеля 1 проверяют, действительно ли они обладают запрошенной неиспользуемой пропускной способностью, и только в случае положительного ответа туннель прокладывается.


Рис. 15.9. Два типа Е-туннелей в технологии MPLS

При прокладке туннеля 2 (свободного) администратор задает только начальный и конечный узлы туннеля, то есть устройства LER5 и LER2. Промежуточные устройства LSR4 и LSR2 находятся автоматически начальным узлом туннеля 2, то есть устройством LER5, а затем с помощью сигнального протокола устройства LER5 сообщает этим и конечному устройствам о необходимости прокладки туннеля.

Независимо от типа туннеля он всегда обладает таким параметром, как резервируемая средняя пропускная способность. В нашем примере туннель 1 резервирует для трафика 10 Мбит/с, а туннель 2 резервирует 36 Мбит/с. Эти значения определяются администратором, и технология MPLS TE никак не влияет на их выбор, она только реализует запрошенное резервирование. Чаще всего администратор оценивает резервируемую для туннеля пропускную способность на основании измерений трафика в сети, тенденций изменения трафика. Некоторые реализации MPLS TE позволяют затем автоматически корректировать величину зарезервированной пропускной способности на основании трафика, проходящего через туннель.

Методы инжиниринга трафика чаще применяют не к отдельным, а к агрегированным потокам, которые являются объединением нескольких потоков. Так как мы ищем общий маршрут для нескольких потоков, то агрегировать можно только потоки, имеющие общие точки входа и выхода. Агрегированное задание потоков позволяет упростить задачу выбора путей, так как при индивидуальном рассмотрении каждого пользовательского потока промежуточные коммутаторы должны хранить слишком большие объемы информации, поскольку индивидуальных потоков может быть очень много. Необходимо подчеркнуть, что агрегирование отдельных потоков в один возможно только в том случае, когда все потоки, составляющие агрегированный поток, предъявляют одни и те же требования к качеству обслуживания.

Однако сама по себе прокладка в MPLS-сети TE-туннеля еще не означает передачи по нему трафика. Она означает только то, что в сети действительно существует возможность передачи трафика по туннелю со средней скоростью, не превышающей зарезервированное значение. Для того чтобы данные были переданы по туннелю, администратору предстоит еще одна ручная процедура – задание для начального устройства туннеля условий, определяющих, какие именно пакеты должны передаваться по туннелю. Такими условиями могут быть классы эквивалентности пересылки FEC и классы обслуживания. Устройство LER должно сначала провести классификацию трафика, удостоверившись, что средняя скорость потока не превышает зарезервированную, а затем начать маркировать пакеты, используя начальную метку TE-туннеля, чтобы передать трафик через сеть MPLS.

Для выбора и проверки TE-туннелей используются расширенный протокол маршрутизации OSPF-TE, который распространяет следующую информацию:

· максимальная пропускная способность звена (то есть между маршрутизаторами);

· максимальная пропускная способность звена, доступная для резервирования;

· резервированная на звене пропускная способность;

· текущее использование пропускной способности звена.

Располагая такими значениями, а также параметрами потоков, для которых нужно определить TE-туннели, маршрутизатор LER может найти решение наиболее рационального использования ресурсов сети. В качестве критерия для этого используется обычно значение min (max Ki) для всех возможных путей, где Ki - коэффициент использования ресурса (отношение потока данных к пропускной способности канала).

В общем случае администратору необходимо проложить несколько туннелей для различных агрегированных потоков. С целью упрощения задачи оптимизации выбор путей для этих туннелей обычно осуществляется по очереди, причем администратор определяет очередность на основе своей интуиции. Очевидно, что поиск TE-путей по очереди снижает качество решения – при одновременном рассмотрении всех потоков в принципе можно было бы добиваться более рациональной загрузки ресурсов. Покажем это на примере.

Пример выбора путей

 

В примере, показанном на рисунке 15.10, ограничением является максимально допустимое значение коэффициента использования ресурсов, равное 0,65. В варианте 1 решение было найдено при очередности рассмотрения потоков 1, 2, 3. Для первого потока был выбран путь А-В-С, так как в этом случае он, с одной стороны, удовлетворяет ограничению (все ресурсы вдоль пути – каналы А-В, В-С и соответствующие интерфейсы маршрутизаторов оказываются загруженными на 50/155=0,32). Пропускная способность каналов А-В и B-C равна В=155, а каналов А-D, D-Е, Е-C равна В=100. Для второго потока также был выбран путь А-В-С, так как и в этом случае ограничение удовлетворяется - результирующий коэффициент использования оказывается равным 50+40/155=0,58. Третий поток направляется по пути А-D-Е-С и загружает ресурсы каналов А- D, D-Е и Е-С на 30/100=0,3. Решение 1 можно назвать удовлетворительным, так как коэффициент использования любого ресурса в сети не превышает 0,65.

 

 


 

Рис. 15.10. Зависимость коэффициента использования ресурсов сети от стратегии выбора туннелей

Однако существует лучший способ, представленный в варианте 2. Здесь потоки 2 и 3 были направлены по верхнему пути А-В-С, а поток 1 по нижнему А-Д-Е-С. Ресурсы верхнего пути оказываются загруженными на 0,45, и нижнего - на 0,5, то есть на лицо более равномерная загрузка ресурсов, а максимальный коэффициент использования всех ресурсов сети не превышает 0,5. Этот вариант может быть получен при одновременном рассмотрении всех трех потоков с учетом ограничения min (max Ki) или же при рассмотрении потоков по очереди в последовательности 2, 3 ,1.

Несмотря на не оптимальность решения, в производимом сегодня оборудовании применяется вариант технологии MPLS TE с последовательным рассмотрением потоков. Он проще в реализации и ближе к стандартным для протоколов OSPF процедурам нахождения кратчайшего пути по одной сети назначения. В отсутствие ограничений найденное решение для выбора кратчайших путей не зависит от последовательности учета сетей, для которых производится поиск.

В технологии MPLS TE информация о найденном рациональном пути используется полностью, то есть запоминаются IP-адреса источника, всех транзитных маршрутизаторов и конечного узла. Поэтому достаточно, чтобы поиском путей занимались только пограничные устройства сети (LER), а промежуточные устройства (LSR) лишь поставляли им информацию о текущем состоянии резервирования пропускной способности каналов. После нахождения пути независимо от того, найден он был устройством LER или администратором, его необходимо зафиксировать. Для этого в MPLS TE используется расширение уже рассмотренного нами протокола резервирования ресурсов (RSVP), который часто в этом случае называют протоколом RSVP TE.

Для реализации этой функции RSVP-TE расширяется новым объектом- ERO (Explicit Route Object). Объект переносится в сообщении Path и содержит явно заданный маршрут, по которому должно идти сообщение. Пересылка такого сообщения маршрутизатором определяется не адресом получателя, содержащимся в заголовке IP-пакета, а содержанием объекта ERO. Эта функция позволяет автоматически (или в результате действий администратора) ремаршрутизировать LSP в обход перегружаемых областей. При установлении нового пути в сигнальном сообщении наряду с последовательностью адресов пути указывается также и резервируемая пропускная способность. Каждое устройство LSR, получив такое сообщение, вычитает запрашиваемую пропускную способность из пула свободной пропускной способности соответствующего интерфейса, а затем объявляет остаток в сообщениях протокол маршрутизации, например OSPF. Таким образом, протокол RSVP-TE выполняет свою традиционную функцию обеспечения требований QoS пользователей в соответствии с моделью интегрального обслуживания.

В заключение рассмотрим вопрос отношения технологий MPLS TE и QoS. Как видно из описания, основной целью MPLS TE является использование возможностей MPLS для достижения внутренней цели поставщика услуг, а именно сбалансированной загрузки всех ресурсов сети. Однако при этом так же создается основа для предоставления транспортных услуг с гарантированными параметрами QoS, так как трафик по TE-туннелям передается при соблюдении некоторого максимального уровня коэффициента использования ресурсов. Коэффициент использования ресурсов оказывает решающее влияние на процесс образования очереди, так что потоки, передаваемые по TE-туннелям, передаются с некоторым гарантированным уровнем QoS.

Для того чтобы обеспечить параметры QoS для разных видов трафика, поставщику услуг необходимо для каждого класса эквивалентности пересылки установить в сети отдельную систему туннелей. При этом для чувствительного к задержкам FEC требуется выполнить резервирование таким образом, чтобы максимальный коэффициент использования ресурсов туннеля находился в диапазоне 0,2-0,3, иначе задержки пакетов и их вариации выйдут за допустимые пределы.

Быстрая ремаршрутизация

 

Кроме основной задачи гибкого управления трафиком подсистема ТЕ выполняет c помощью стека меток ещё одну функцию – быструю ремаршрутизацию FRR (Fast Reroute). В случае выхода из строя канала связи в сетях с коммутацией пакетов требуется повторное установление соединения с оконечного пункта. При этом происходят задержки и потери пакетов (ячеек, кадров) данных, значительно влияющих на показатели QoS. FRR в MPLS-сети обеспечивает защиту от этих потерь, ремаршрутизируя трафик, проходящий по LSP, в обход повреждённого канала в течении 50 мсек. Приведённый на рис. 15.11 пример показывает, каким образом FRR используется.

 


 

Рис. 15.11. Пример применения FRR.

 


Как видно из рис. 15.11, когда LSR2 обнаружит, что канал между LSR2 и LSR3 неисправен, трафик в LSR3 будет переведён на резервный туннель (через LSR5 и LSR6). Это выполняется помещением метки 38 наверх стека с помощью процедуры push. Предварительно производится процедура замены метки (swap) 25 на 9. Продвижение пакета через LSR5 происходит по верхней метке. На LSR6 верхняя метка удаляется. В результате верхней меткой, по которой происходит коммутация, становится метка 9, т.е. та же самая, что и в случае исправного канала между LSR2 и LSR3 (т.е. когда в LSR2 метка 25 заменяется на метку 9).