Методы описания движения жидкости

Задача кинематического изучения движения жидкости заключается в определении в каждой точке движущегося газа значения скорости для любого момента времени.

Движение газа можно изучать двумя методами – методом Эйлера или методом Лагранжа.

Метод Эйлера. В методе Эйлера фиксируется точка пространства с координатами x, y, z и исследуется изменение скорости частиц в этой точке с течением времени. Отслеживаемая скорость частиц является функцией координат и времени V = ƒ (t, x, y, z). Совокупность величин x, y, z, t называется переменными Эйлера.

Движение газа по методу Эйлера задается следующим образом:

 

(2.1)

Предполагая движение газа непрерывным, будем считать указанные функции однозначными, непрерывными и дифференцируемыми функциями координат x, y, z и времени t. В этом случае для нахождения траектории частиц газа следует в уравнениях (2.1) заменить на производные и интегрировать следующую систему дифференциальных уравнений:

(2.2)

После интегрирования системы (2.2) получим

 

где a, b, c – произвольные постоянные, значения которых определяются исходя из начальных условий. Исключим время t и получим уравнение траектории частицы газа.

Проекции ускорения газовых частиц в переменных Эйлера следующие:

где – функции от x, y, z; x, y, z – функции от t.

По правилу дифференцирования сложной функции

 

. (2.3)

Так как , то выражения для проекций ускорения запишутся в виде

Следует помнить, что когда берутся полные производные, то учитывается не только изменение времени t, но и изменение координат (в зависимости от времени – x(t), y(t), z(t)) частицы газа при ее движении по траектории. Частные производные называются конвективными. Конвективная производная отражает то обстоятельство, что скорость движения изменяется при перемещении из одной точки пространства в другую. Конвективное ускорение имеет место практически всегда при стационарном и нестационарном движениях. Оно может быть равно нулю только тогда, когда .

Частные производные по времени берутся при фиксированных значениях координат и называются локальными (местными) производными. Локальная производная характеризует нестационарность процесса. При стационарном движении локальное ускорение всегда равно нулю. При нестационарном движении оно равно нулю только тогда, когда в данной точке скорость имеет экстремальное (максимальное или минимальное) значение во времени.

Метод Лагранжа. В методе Лагранжа фиксируются индивидуальные частицы газа и рассматривается их движение вдоль собственных траекторий. Так как газовых частиц бесчисленное множество, то охарактеризуем каждую частицу. В качестве характеристики частицы выберем ее координаты в начальный момент времени t = t0 (a, b, c). Это означает, что из всей совокупности траекторий данной частице будет принадлежать та, которая проходит через точку a, b, c. Таким образом, координаты данной частицы x, y, z зависят от a, b, c, t – переменных Лагранжа, т. е.

 

. (2.4)

 

Уравнения (2.4) – это параметрические уравнения семейства траекторий, заполняющих все пространство, занятое газом.

Таким образом, если в методе Эйлера траектории движения частиц получаются интегрированием дифференциальных уравнений (2.2), то в методе Лагранжа они заданы функциями (2.4), из которых могут быть найдены проекции скорости и ускорения частиц:

 

, ,

, ,

, .

 

Однако для решения большинства практических задач аэродинамики нет необходимости знать траектории движения частиц. Чаще всего нужно иметь данные о величине скорости в данной точке пространства вне зависимости от индивидуальности частицы, проходящей через нее. Этим практическим вопросам отвечает метод Эйлера, который как наиболее простой чаще всего применяется в аэродинамике.

 

Линии тока и траектории

 

Методу Лагранжа отвечает понятие траекторий частиц. Траектория представляет собой линию, изображающую путь, пройденный в пространстве частицей за некоторый отрезок времени.

Методу Эйлера соответствует понятие линий тока жидкости. Рассмотрим в момент времени t поле скоростей потока жидкости. Общую картину течения можно получить, если провести в потоке движущейся жидкости линии, совпадающие с направлением вектора скорости. Пусть вектор скорости в некоторой точке 1 пространства равен (рис. 2.1). В этот же момент t в другой точке 2, расположенной на векторе и очень близкой к точке 1, вектор скорости равен , и т. д. В результате такого построения получаем ломаную линию 12345…, обладающую тем свойством, что вектор скорости, соответствующий начальной точки каждого звена, направлен вдоль этого звена. Устремив к нулю длину каждого отрезка, получаем кривую, называемую линией тока. Линиятока – мгновенная линия, вдоль которой в данный момент времени двигается совокупность частиц.

Если движение неустановившееся, то в следующий момент времени скорость в точке 1 отлична от предыдущего значения. Поэтому, проводя дальнейшие рассуждения и построения, аналогичные предыдущим, придем к иной кривой (к другой линии тока).

Линией тока называется линия, касательная к каждой точке которой совпадает по направлению с вектором скорости в данный момент времени.

Если – элемент линии тока, то из условия, что на линии тока , можно записать следующие уравнения:

(2.5)

 

которые являются дифференциальными уравнениями линий тока.

Семейство линий тока дает картину течения в данный момент времени, можно сказать, моментальный снимок направлений скоростей потока.

Через каждую точку пространства может проходить множество траекторий частиц, они могут пересекаться и пересекать сами себя.

Линии тока не пересекаются ни сами с собой, ни с другими линиями тока, так как вектор скорости в одной точке пространства не может иметь два разных значения в данный момент времени. Исключение составляют лишь особые точки, в которых скорость V = 0 (критические точки или точки торможения) или V = ∞ (исток, сток). Критическая точка – точка потока, в которой вектор скорости равен нулю, т. е. одновременно . Для системы уравнений линий тока (2.5) эта точка является особой, в ней может нарушаться теорема единственности решения. Через критическую точку может проходить несколько и даже бесконечно много линий тока. Аналогичный вывод можно получить для источника и стока. Для этих кинематических образов значение скорости в их центрах обращается в бесконечность. Следовательно, и они являются особыми точками для системы уравнений (2.5).

Необходимо четко представлять разницу между линией тока и траекторией движения частицы. Если траектория отражает изменение положения частицы с течением времени, то линия тока указывает направление скоростей разных частиц в один и тот же момент времени. И только при установившемся движении линия тока совпадает с траекторией частицы. В этом случае траектории всех частиц, проходящих через какую-либо точку пространства, будут одинаковыми, следовательно, в каждый момент времени все частицы, которые лежат на траектории, будут образовывать и линию тока. В случае неустановившегося движения линии тока и траектория частицы не совпадают.

Уравнения траектории следующие:

Поверхность тока – поверхность, построенная для фиксированного момента времени, в каждой точке которой вектор скорости лежит в касательной плоскости. Если выделить в движущейся жидкости некоторый бесконечно малый замкнутый контур, через каждую точку которого можно провести линию тока, то совокупность всех линий тока образует замкнутую поверхность – трубку тока (рис. 2.2). Жидкость, движущуюся внутри трубки тока, называют элементарной струйкой.

Трубка тока – простой и наглядный кинематический образ. Разбив весь поток на достаточно узкие трубки тока, можно, пользуясь основным свойством трубки – непроницаемостью ее боковой поверхности, изучать бесконечно малые перемещения выделенного объема жидкости. Между двумя произвольными линиями тока количество протекающей жидкости постоянно, поскольку вектор скорости лежит в касательной плоскости к поверхности трубки тока. То же самое можно сказать и о трубке тока: расход жидкости через любое сечение трубки тока одинаков.

 

 

Движение жидкой частицы

 

В кинематике твердого тела доказывается, что в общем случае движение твердого тела в каждый момент времени складывается из поступательного перемещения и вращения вокруг некоторой оси (мгновенной оси вращения). Движение жидкой частицы гораздо сложнее, так как она в процессе движения еще и деформируется.

Рассмотрим в момент времени t движение бесконечно малой частицы жидкости (рис. 2.3). Пусть точка М частицы имеет скорость, проекции которой равны , , в системе координат OXYZ. Поместим в эту точку начало системы координат Mx1y1z1.

Тогда в некоторой точке на поверхности частицы с координатами проекции скорости равны

 

Применим к полученной системе разложение в ряд Тейлора и, сохраняя только величины первого порядка малости (члены с и в степени не выше первой), получим следующее:

 

,

, (2.6)

.

Преобразуем эти выражения: прибавим к правой части первого уравнения (2.6) величины и и перегруппируем члены:

 

 

Аналогично преобразуем второе и третье уравнения системы (2.6), дополнениями которых являются члены , и

 

Введем следующие обозначения:

 

, , ,

, ,

, .

 

Тогда преобразованные выражения (2.6) для проекций вектора скорости можно записать следующим образом:

(2.7)

Введем функцию . Ее производные по координатам равны

 

, ,

.

 

Теперь перепишем систему уравнений (2.7) с помощью функции

 

(2.8)

 

Выясним физический смысл каждого из слагаемых, входящих в выражения (2.8):

1. – это проекции скорости поступательного движения рассматриваемой частицы в пространстве твердого тела.

2. , , – проекции угловой скорости вращения частицы жидкости (как твердого тела) вокруг мгновенной оси, проходящей через точку М. Такое вращательное движение называется вихревым движением, а компоненты угловой скорости – компонентами вихря. Угловая скорость вращательного движения равна , где – так называемый ротор или вихрь вектора скорости:

 

 

= ,

 

 

где – операция градиента, т. е. .

Физически неравенство нулю значения в какой-либо точке потока означает, что в этой точке имеет место вращение элементарного объема. Составляющие угловой скорости вращения равны

 

. (2.9)

 

3. . Смысл этих слагаемых можно выяснить, исходя из простых физических соображений. Ясно, что жидкая частица при движении деформируется, и эти члены представляют собой не что иное, как скорости деформации частицы. Поясним это на примере.

Пусть бесконечно малая частица имеет в момент t форму прямоугольного параллелепипеда. Рассмотрим его проекцию на плоскость XY (рис. 2.4, прямоугольник МВDС). Компоненты скорости в точке М равны . Составляющие скорости в точках В и С с точностью до малых первого порядка можно представить в виде

 

, ,

, ,

 

или, так как рассматривается перемещение точек С и В относительно точки М, то

 

, ,

, .

 

Очевидно, что и есть скорости линейной деформации ребер прямоугольника. и указывают на поворот ребер МС и МВ, т. е. скорости деформации скашивания прямоугольника в некоторый косоугольник. Ребро МС поворачивается со скоростью , МВ – со скоростью , т. е. скорость изменения прямого угла ВМС складывается из угловых скоростей вращения ребер МС и МВ и, следовательно, представляет собой сумму . Аналогичные рассуждения можно провести для других проекций параллелепипеда.

Отсюда следует, что – компоненты скорости деформации жидкой частицы. Следовательно, формулы (2.8) подтверждают следующее:

Элементарное перемещение частицы жидкости (газа) состоит из поступательного перемещения ее центра со скоростью , вращения относительно некоторой оси, проходящей через этот центр с угловой скоростью , и деформационного движения, характеризуемого функцией .

Эта теорема (первая теорема Гельмгольца) является основной теоремой кинематики жидкой среды. То есть движение жидкой частицы в общем случае можно разложить на поступательное движение, вращательное движение и движение от деформации, которая состоит из линейной деформации и деформации скашивания. Такое разложение наиболее правильно с динамической точки зрения, так как оно разделяет движения, происходящие от сил разной природы.