Касательная и нормаль к кривой.

Если кривая задана в декартовой системе координат уравнением

, то , где - угол между касательной к этой кривой в точке с абсциссой и положительным направлением оси .

Если кривая задана уравнением , то уравнения касательной и нормали к этой кривой в точке имеют соответственно вид:

 

, (1)

. (2)

 

Угол между двумя кривыми и в точке их пересечения определяется как угол между прямыми, касательными к этим кривым в точке их пересечения по формуле

, (3)

где угловые коэффициенты касательных к кривым в точке их пересечения и равны соответственно , .

Пример 1.Составить уравнение касательной и нормали к кривой в точке .

Решение. Подставляя в заданное уравнение параболы значение , находим ординату точки касания . Находим угловой коэффициент касательной, , следовательно, . Подставляя найденные значение в уравнение (1), имеем уравнение касательной , подставляя эти же значения в уравнение (2), получим уравнение нормали .

Пример 2.Найти углы под которыми пересекаются прямая и парабола .

Решение.Найдем точки пересечения кривых, решив систему уравнений

Отсюда имеем , . Далее, определим угловые коэффициенты касательных к параболе в точках и .Соответственно имеем , . Угловой коэффициент прямой во всех точках один и тот же и равен в нашем случае 2. Далее находим углы ,

.

Пример 3.Определить в каких точках заданной линии касательная к этой линии параллельна прямой и написать уравнение этой касательной

, .

Решение. Находим производную . Далее находим значение из уравнения . Имеем, .Значения функции при есть и . Отсюда имеем, и точки заданной линии в которых касательная к этой линии параллельна данной прямой . Найдем теперь уравнения этих касательных. Используя формулу (1), получим

-уравнение касательной в точке ,

-уравнение касательной в точке .

 

Контрольные вопросы.

1.Геометрический смысл производной.

2.Касательная и нормаль к кривой.

3.Угол между двумя кривыми.

4.Другие приложения производной.

 

Задания.

1.Найти углы, под которыми пересекаются эллипс и парабола

, .

2. Определить в каких точках заданной линии касательная к этой линии параллельна прямой и написать уравнение этой касательной

1) , ; 2) , ; 3) , .

3.Найти угол между кривой и прямой

Занятие 8.

Интегральное исчисление.

Неопределенный интеграл.

Функция - называется первообразной для функции на промежутке , если в каждой точке этого промежутка выполняется равенство

или .

Если первообразная для функции , то множество , где произвольная постоянная, называется неопределённым интегралом от функции и обознается

=

При этом называется подынтегральной функцией.

Процесс отыскания первообразной называется интегрированием.

Свойства неопределённого интеграла:

1. ,

2. ,

3. ,

4. ,где некоторая постоянная,

5. .

6.(Инвариантность формулы интегрирования) Если = ,то и

= .

Пример 1. Найти первообразную функции .

Решение.Рассмотрим функцию => .

Следовательно, первообразная есть

.

 

Таблица основных интегралов:

1. ,

2. при ,

3. ,

4. ,при и , и в частности ,

5. ,

6. ,

7. ,

8. ,

9. ,

10. ,

11. ,

12. .

Пример 2.Вычислить интеграл .

Решение.

.

Пример 3. Вычислить интеграл .

Решение.

.