СИСТЕМНОСТЬ В ЕСТЕСТВОЗНАНИИ 8 страница

Большую роль в создании квантовой механики сыграли работы П. Дирака, который заложил основы квантовой электродинамики и квантовой теории гравитации, разработал квантовую статистику (статистика Ферми - Дирака), релятивистскую теорию движения электрона, предсказал позитрон и т.д. Окончательное формирование квантовой механики как последовательной теории с ясными физическими основами и стройным математическим аппаратом произошло в результате работы Гейзенберга (1927), который сформулировал соотношение неопределенностей - важнейшее соотношение, отражающее физический смысл уравнений квантовой механики.

Детальный анализ спектров атомов привел к представлению о том, что электрону кроме заряда и массы должна быть приписана еще одна внутренняя характеристика - спин — собственно момент количества движения микрочастицы, имеющий квантовую природу и не связанный с движением частицы как целого. Важную роль сыграл открытый В. Паули (1925) принцип запрета, согласно которому в квантовой системе две (или более) тождественные частицы с полуцелым спином не могут одновременно находиться в одном и том же состоянии. Этот принцип имеет фундаментальное значение в теории атома, молекулы, ядра, твердого тела.

В течение короткого времени квантовую механику с успехом применили для создания теории атомных спектров, строения молекул, химической связи, периодической системы элементов, металлической проводимости и ферромагнетизма. Дальнейшее принципиальное развитие квантовой теории связано главным образом с релятивистской квантовой механикой.

Современные представления об элементарных частицах и атомах

В настоящее время достаточно много известно об атомарном строении вещества и элементарных частицах — мельчайших известных частицах физической материи [7, 16, 23, 24, 28]. Поскольку элементарные частицы способны к взаимным превращениям, это не позволяет рассматривать их, так же как и атом, в качестве простейших, неизменных «кирпичиков мироздания». Число элементарных частиц очень велико. Всего открыто более 350 элементарных частиц, из которых стабильны лишь фотон, электронное и мюонное нейтрино, электрон, протон и их античастицы (каждая элементарная частица, за исключением абсолютно нейтральных, имеет свою античастицу). Остальные элементарные частицы самопроизвольно распадаются за время от 103 с (свободный нейтрон) до 10-22- 10-24 с (резонансы).

Элементарные частицы классифицируются по типам фундаментальных взаимодействий, в которых они участвуют, и на основе законов сохранения ряда физических величин следующим образом:

группа лептонов - частицы со спином 1/2, не участвующие в сильном взаимодействии и обладающие сохраняющейся внутренней характеристикой - лептонным зарядом;

адроны — элементарные частицы, участвующие во всех фундаментальных взаимодействиях, включая сильное; характерным для адронов сильным взаимодействиям свойственно максимальное число сохраняющихся величин (законов сохранения). Адроны делятся на барионы и мезоны. По современным представлениям, адроны имеют сложную внутреннюю структуру: барионы состоят из трех кварков; мезоны - из кварка и антикварка;

отдельную «группу» составляет фотон.

При столкновениях элементарных частиц происходят всевозможные превращения их друг в друга (включая рождение многих дополнительных частиц), не запрещаемые законами сохранения.

Атомом называют часть вещества микроскопических размеров и массы, мельчайшую частицу химического элемента, сохраняющую его свойства. Атомы состоят из элементарных частиц и имеют сложную внутреннюю структуру. В центре атома находится положительно заряженное ядро, в котором сосредоточена почти вся масса атома. Вокруг ядра движутся электроны, образующие электронные оболочки, размеры которых (10-8 см) определяют размеры атома. Ядро атома состоит из протонов и нейтронов. Число электронов в атоме равно числу протонов в ядре (заряд всех электронов атома равен заряду ядра), число протонов равно порядковому номеру элемента в Периодической таблице элементов. Атомы могут присоединять или отдавать электроны, становясь отрицательно или положительно заряженными ионами. Химические свойства атомов определяются в основном числом электронов во внешней оболочке. Соединяясь химически, атомы образуют молекулы.

Внутренняя энергия атома может принимать лишь определенные (дискретные) значения, соответствующие устойчивым состояниям атома, и изменяется только скачкообразно путем квантового перехода. Поглощая порцию энергии, атом переходит в возбужденное состояние (на более высокий уровень энергии). Испуская фотон, атом может перейти из возбужденного состояния в состояние с меньшей энергией (на более низкий уровень энергии). Уровень, соответствующий минимальной энергии атома, называется основным, остальные - возбужденными. Квантовые переходы обусловливают атомные спектры поглощения и испускания, индивидуальные для атомов всех химических элементов.

Нуклоны (протоны и нейтроны) в ядре прочно удерживаются ядерными силами. Чтобы удалить нуклон из ядра, надо совершить большую работу, т.е. сообщить ядру значительную энергию. По закону сохранения энергии, энергия связи ядра (энергия, необходимая для полного расщепления ядра на отдельные нуклоны) равна энергии, которая выделяется при образовании ядра из отдельных частиц. Энергия связи атомных ядер очень велика по сравнению с энергией связи электронов с атомным ядром. Определить энергию связи ядра можно, зная массу ядра и массы протонов и нейтронов, из которых оно состоит. Согласно эффекту дефекта массы, масса покоя ядра всегда меньше суммы масс покоя входящих в него нуклонов. Энергия связи ядер вычисляется с помощью известного соотношения Эйнштейна E = т/с2, где т - суммарная масса свободных нуклонов минус масса ядра - дефект массы.

Важную информацию о свойствах ядер дает знание удельной энергии связи ядра (энергии связи, приходящейся на один нуклон). С увеличением массового числа - числа нуклонов в ядре — удельная энергия связи, начиная с гелия, сначала слабо растет, достигает максимума у железа (массовое число 56), после чего плавно снижается. Наиболее устойчивы ядра, обладающие самой большой удельной энергией связи, — железо и близкие к нему химические элементы Периодической системы элементов.

Использование ядерной энергии основано на осуществлении цепных реакций деления тяжелых ядер и реакций термоядерного синтеза - слияния легких ядер. И те, и другие реакции сопровождаются выделением энергии. В тяжелых ядрах наряду с большими силами электрического отталкивания, стремящимися разорвать ядро на части, действуют значительные ядерные силы, которые удерживают ядро от распада. Под влиянием поглощенного нейтрона ядро возбуждается и начинает деформироваться, приобретая вытянутую форму. Когда силы отталкивания внутри ядра начинают преобладать над силами притяжения, ядро разрывается на две части. Под действием сил кулоновского отталкивания осколки ядра разлетаются со скоростью, равной 1/30 скорости света, испускается излучение высокой частоты.

Не все ядра способны к делению. Наиболее легко делится изотоп урана 235U, составляющий всего 1/140 от более распространенного изотопа 238U. При каждом акте деления ядра испускаются 2-3 нейтрона, которые в свою очередь могут вызывать деление других ядер - начинается ядерная цепная реакция. Она сопровождается выделением огромного количества энергии. Так, при полном делении ядер, находящихся в 1 г урана, выделяется энергия, эквивалентная получаемой при сгорании 3 т угля или 2,5 т нефти. Управляемая реакция деления ядер реализуется в ядерных реакторах, неуправляемая - в атомной бомбе. Выделение энергии при слиянии ядер легких атомов дейтерия, трития или лития с образованием гелия происходит в ходе термоядерных реакций, протекающих лишь при очень высоких температурах. Реакции ядерного синтеза являются источником звездной энергии. Эти же реакции протекают при взрыве водородной бомбы. Осуществление управляемого термоядерного синтеза на Земле сулит человечеству новый, практически неисчерпаемый источник энергии. В этом отношении наиболее перспективна реакция слияния ядер атома дейтерия и трития.

 

§ 6.5. Концепции возникновения и развития Вселенной

Модели развития Вселенной

Для понимания физической картины мира большое значение имеют выводы космологии - учения о Вселенной как едином целом и ее эволюции. Наряду с построением теории общей эволюции Вселенной важно получить представления о развитии галактик, звезд и планет. Вопросы происхождения и эволюции небесных тел изучаются особым разделом науки - космогонией.

Для решения космологических и космогонических проблем используют два основных подхода:

1)наблюдательны и: сравнивая характеристики небесных тел, находящихся в разных стадиях развития, можно установить, в какой последовательности эти стадии сменяли друг друга;

2) теоретический: исходя из общих законов физики, можно определить, какие именно условия должны были существовать в прошлом, чтобы небесное тело приобрело именно те характеристики, которыми оно обладает сейчас, какой путь развития оно прошло.

Первый подход применяют к таким объектам, как звезды, звездные скопления, газовые туманности, галактики, планетные системы (сейчас известна лишь одна такая система - Солнечная). При изучении эволюции Вселенной в целом возможен только теоретический подход.

Важнейший постулат космологии состоит в том, что законы природы, установленные на основе изучения весьма ограниченной части Вселенной (обычно опытов на планете Земля), могут быть экстраполированы на гораздо большие области, в конечном счете - на всю Вселенную. Космологические теории различаются в зависимости от того, какие физические принципы и законы закладываются в их основу. Построенные на их базе модели должны допускать проверку для наблюдаемой области Вселенной, а выводы теории должны подтверждаться наблюдениями (во всяком случае не противоречить им). Сейчас этому требованию наилучшим образом удовлетворяют разработанные на основе общей теории относительности однородные изотропные модели нестационарной «горячей» Вселенной [1, 3, 10, 19, 20, 27].

Возникновение современной космологии связано с созданием релятивистской теории тяготения (А. Эйнштейн, 1916) и зарождением внегалактической астрономии (1920-е гг.). На первом этапе развития релятивистской космологии главное внимание уделялось геометрии Вселенной, т.е. рассмотрению кривизны четырехмерного пространства-времени и возможной замкнутости Вселенной. Начало второго этапа отмечено работами отечественного ученого A.A. Фридмана (1922-1924), который показал, что Вселенная, заполненная тяготеющим веществом, не может быть стационарной — она должна расширяться или сжиматься. Однако эти принципиально новые результаты получили признание лишь после открытия красного смещения (эффекта «разбегания» галактик) Э. Хабблом (1929). В результате на первый план выступили проблемы механики Вселенной и ее возраста (длительности расширения). Третий этап связан с моделями «горячей» Вселенной (Г. Гамов, 1940-е гг.), когда внимание в основном было сосредоточено на физике Вселенной - состоянии вещества и физических процессах, идущих на разных стадиях расширения Вселенной, включая наиболее ранние стадии. Наряду с законом тяготения в космологии приобретают большое значение законы термодинамики, данные ядерной физики и физики элементарных частиц. На этой основе возникает релятивистская астрофизика.

Теории однородной изотропной Вселенной подразумевают, во-первых, уравнение А. Эйнштейна общей теории относительности, откуда следуют кривизна пространства-времени и связь кривизны с плотностью массы (энергии); во-вторых, представления об однородности и изотропности Вселенной, т.е. считается, что в ней нет каких-либо выделенных точек и направлений, а все точки и направления равноправны; это утверждение часто называют космологическим постулатом.

Если дополнительно предположить, что во Вселенной отсутствуют силы, возрастающие с расстоянием и противодействующие тяготению вещества, а плотность массы создается главным образом веществом, то космологические уравнения приобретают простой вид и возможны только две модели:

открытая модель, в которой кривизна трехмерного пространства отрицательна или (в пределе) равна нулю, а Вселенная бесконечна; в такой модели расстояния между скоплениями галактик неограниченно возрастают со временем;

замкнутая модель, в которой кривизна пространства положительна, Вселенная конечна, но столь же безгранична, как и в открытой модели; в такой модели расширение со временем сменяется сжатием.

В ходе эволюции Вселенной кривизна трехмерного пространства уменьшается при расширении, увеличивается при сжатии, но знак кривизны не меняется, т.е. открытая модель остается открытой, а замкнутая - замкнутой. Начальные стадии эволюции по обеим моделям совершенно одинаковы и характеризуются сингулярностью с огромной (не меньше 1093 г/см3) плотностью массы и кривизной пространства и взрывным, замедляющимся со временем расширением. Указанные выше исходные положения релятивистской космологии достаточны для суждений об общем характере эволюции Вселенной, но они оставляют открытым вопрос о ее начальном состоянии. Характеристики начального состояния - третье независимое положение релятивистской космологии.

С 1960-1970-х гг. общепринята модель «горячей» Вселенной, в соответствии с которой предполагается высокая начальная температура. В условиях очень высокой температуры >1013 К) вблизи сингулярности не могли существовать не только молекулы или атомы, но и атомные ядра, а была лишь равновесная смесь элементарных частиц (включая фотоны и нейтрино). Физика элементарных частиц позволяет рассчитать состав такой смеси при разных температурах, соответствующих этапам эволюции, а уравнения космологии — найти закон расширения однородной и изотропной Вселенной и изменение ее физических параметров в процессе расширения. Поскольку расширение вначале происходило с большой скоростью, то высокие плотность и температуры могли быть только очень короткое время. Уже по окончании начального отрезка времени 0,01 с плотность упала от бесконечного (формально) значения до 1010 г/см3. Во Вселенной в момент t 0,01 с сосуществовали фотоны, электроны, позитроны, нейтрино и антинейтрино, а также небольшая доля нуклонов (протонов и нейтронов). В результате последующих превращений к моменту времени 3 мин из нуклонов образовалась смесь легких ядер (2/3 водорода и 1/3 гелия по массе). Все остальные химические элементы синтезировались намного позднее из этого дозвездного вещества в результате ядерных реакций в недрах звезд. В момент образования нейтральных атомов гелия и водорода (при t 106лет) вещество стало прозрачным для оставшихся фотонов, и в настоящее время они наблюдаются в виде реликтового (остаточного) излучения, свойства которого можно предсказать на основе теории «горячей» Вселенной. Вначале расширение Вселенной происходило очень быстро, но процессы превращений элементарных частиц протекали намного быстрее, в результате чего установилось термодинамическое равновесие. Это чрезвычайно важное обстоятельство, поскольку такое состояние полностью описывается макроскопическими параметрами (определяемыми скоростью расширения) и совершенно не зависит от предшествующей истории. Незнание того, что происходило при плотностях, намного превосходящих ядерную, не мешает делать более или менее достоверные суждения о последующих состояниях, описываемых законами современной физики микромира. Общие законы физики надежно проверены при ядерной плотности 1014 г/см3 (эту плотность имела Вселенная спустя 10-4 с от начала расширения). Следовательно, физические свойства эволюционирующей Вселенной вполне поддаются изучению со времени 10 сек от состояния сингулярности.

Выводы релятивистской космологии принципиальны для понимания физической картины мира. Следовательно, степень их достоверности представляет общенаучный и мировоззренческий интерес. Считают, что наибольшее значение имеют выводы о нестационарности (расширении) Вселенной, о высоких значениях плотности и температуры в начале расширения («горячая» Вселенная) и об искривленности пространства-времени, а также о знаке кривизны трехмерного пространства окружающего мира и степени однородности и изотропии Вселенной. Вывод о нестационарности Вселенной подтвержден обнаруженным в спектрах галактик красным смещением, а концепция «горячей» Вселенной - открытым в 1965 г. реликтовым излучением, которое оказалось в высокой мере (с точностью до долей процента) изотропным, а спектр его равновесным. Как мы уже говорили, его температура составляет около 3 К. Это доказывает, что Вселенная на протяжении более 99% времени своего существования изотропна.

В настоящее время не установлено, какая модель кривизны трехмерного пространства наиболее адекватно отражает действительность. Кривизну можно определить по известной средней плотности массы во Вселенной или по точной зависимости красного смещения от расстояния (отклонению от линейной зависимости). Астрономические наблюдения дают значения усредненной плотности вещества, входящего в видимые галактики, около 3·10-31 г/см3. Гораздо труднее определить плотность скрытого (невидимого) вещества, а тем более плотность, создаваемую нейтрино (если масса нейтрино не равна нулю), поэтому неопределенность суммарной плотности вещества Вселенной весьма велика; она может быть на два порядка больше усредненной плотности звездного вещества. На основе имеющихся данных нельзя сделать выбор между открытой (расширяющейся безгранично) и замкнутой (расширение в далеком будущем сменится сжатием) моделями. Эта неопределенность не сказывается на общем характере расширения в прошлом и сейчас, но влияет на определение возраста Вселенной (длительность расширения). Если бы расширение происходило с постоянной скоростью, то время, истекшее от момента изначального взрыва, составляло бы около 13 млрд лет. Но предполагается, что расширение идет с замедлением, поэтому время, истекшее с момента начала расширения, меньше — 8,7 млрд лет. Для замкнутых моделей это время будет еще меньше. С другой стороны, если существуют космологические силы, соответствующие силам отталкивания, то оказывается возможной, например, длительная (10 млрд лет или более) задержка расширения в прошлом; тогда возраст Вселенной может составлять десятки миллиардов лет.

Развитие космологии поставило ряд новых проблем. Так, для изучения состояния вещества с плотностью намного порядков выше ядерной плотности нужна совершенно новая физическая теория; предполагается, что это должен быть некий синтез существующей теории тяготения и квантовой теории. Подходы к изучению сингулярности пока лишь намечаются. Кроме того, возник вопрос о единственности Вселенной. В рамках современной космологии считается, что Метагалактика единственна. Но проблемы пространства-времени разработаны еще недостаточно для того, чтобы составить представление о возможностях, которые могут быть реализованы в природе. В теории космологии не решена и проблема зарядовой асимметрии во Вселенной. В нашем космическом окружении (во всяком случае в пределах Солнечной системы и Галактики, но, вероятно, и в пределах всей Вселенной) имеет место количественное преобладание вещества над антивеществом. Причины этого кроются, по-видимому, в самых ранних стадиях развития Вселенной.

Происхождение и эволюция звезд и галактик

В настоящее время установлено, что звезды и звездные скопления имеют разный возраст — от 10 лет (шаровые звездные скопления) до 10 лет для самых молодых (рассеянные звездные скопления и звездные ассоциации). В этой картине еще много неясного, многое подлежит уточнению, однако в главных чертах она представляется достаточно обоснованной [1,9, 10, 19, 29]. В общем виде эволюция звезд проходит несколько стадий:

возникновение звезды в результате конденсации межзвездных пыли и газа, богатого водородом;

стадия термоядерных реакций превращения водорода в гелий в центре звезды (наиболее длительная);

при исчерпании в центре водорода ядро сжимается и нагревается, а оболочка сильно расширяется; даже при увеличении светимости температура поверхности падает - звезда становится красным гигантом;

термоядерное загорание гелия и более тяжелых элементов в ядре звезды, сопряженное в ряде случаев со сбросом водородной оболочки и образованием так называемой планетарной туманности;

остывание остатка звезды, переход в стадию белого карлика.

В зависимости от начальной массы, возможно, и от момента вращения звезды могут завершить свою эволюцию взрывом сверхновой (с остатком в виде нейтронной звезды либо без остатка). Согласно общей теории относительности, наиболее массивные звезды, сохранившие свою массу вплоть до исчерпания термоядерного горючего, должны коллапсировать в состояние черной дыры.

Важной характеристикой является вращение звезды вокруг своей оси. Звезды с высокой температурой вращаются очень быстро - экваториальная скорость вращения у них, как правило, превышает 100 км/с. Скорость вращения звезды падает с уменьшением ее температуры. Например, у Солнца скорость вращения точек экватора составляет всего около 2 км/с.

Считается, что первичная туманность, из которой образуется звезда, имеет начальный момент количества движения. Если бы этот момент количества движения сохранялся, то звезды не образовывались, так как туманность, сжимаясь, увеличивала бы скорость вращения и разорвалась задолго до этого. Очевидно, что момент количества движения каким-то образом удаляется из туманности. Полагают, что это происходит следующим образом. Конденсирующаяся туманность связана с окружающей менее плотной средой магнитным полем. Поскольку межзвездная материя «приклеена» к магнитным силовым линиям, то вращение конденсирующейся туманности передается окружающей среде и туманность теряет момент количества движения до тех пор, когда плотность протозвезды становится достаточно высокой. Окончательно сконденсировавшаяся звезда должна иметь экваториальную скорость несколько сот километров в секунду независимо от массы. Для горячих звезд наблюдения дают именно такую скорость вращения. У холодных звезд скорость вращения гораздо меньше. Так, в Солнечной системе 98% момента количества движения принадлежит планетам и только 2% - Солнцу. Медленное вращение холодных звезд может быть объяснено наличием у них планетных систем, аналогичных Солнечной. Если это так, то число планетных систем в Галактике достаточно велико.

Соотношение общего количества звездного и межзвездного вещества в галактиках со временем убывает, поскольку из межзвездной диффузной (рассеянной) материи образуются звезды, которые в конце своего эволюционного пути возвращают в межзвездное пространство только часть вещества; некоторая его часть остается в белых карликах и в нейтронных звездах. Перерабатываясь в звездных недрах, вещество галактик постепенно изменяет химический состав, обогащаясь гелием и тяжелыми элементами. Считается, что галактики образовались из газовых облаков, которые состояли главным образом из водорода. Возможно, эти облака содержали только водород, а гелий и тяжелые элементы появились в результате термоядерных реакций внутри звезд. Однако самые тяжелые ядра (уран и торий) не могли образоваться в этом процессе. Предполагается, что они возникают при вспышках сверхновых звезд в результате быстрого их сжатия (коллапса) и последующего взрыва.

Столкновения облаков межзвездного газа приводят к постепенному уменьшению их скорости, кинетическая энергия переходит в тепловую и меняются форма и размеры газового облака. Согласно расчетам, в случае быстрого вращения такое облако должно принять форму сплющенного диска, как, например, форма нашей Галактики. Если же облако вращается медленно, формируется не спиральная галактика, а эллиптическая.

Происхождение Солнечной системы

Наибольшее развитие получила космогония Солнечной системы (планетная космогония) [1, 29]. Еще Р. Декарт (1644) высказал предположение, что Солнечная система образовалась из облака газа и пыли. Аналогичную гипотезу позднее развивали Ж.Л. Бюффон (1749) и И. Кант (1755). Они полагали, что в центре облака возникло Солнце, в периферийных его частях - планеты. Согласно предположению Ж.Л. Лапласа (1796), из-за вращения туманности возникает так называемая ротационная неустойчивость, вследствие чего туманность сплющивается, принимая форму чечевицы. С ее экватора выбрасывается вещество, из которого вокруг туманности образуются плоские кольца, похожие на кольца Сатурна; впоследствии газ, выброшенный из туманности, конденсируется в планеты.

В начале XX в. английский ученый Дж.Х. Джине предложил космогоническую гипотезу, в соответствии с которой Солнце, как и другие звезды, сформировалось без планетной системы, она появилась только в результате катастрофы: другая звезда прошла настолько близко к Солнцу, что вырвала из его недр часть вещества. В результате его конденсации и образовались планеты. Однако впоследствии было установлено, что выдвинутые Джинсом предположения недостаточно обоснованны.

До сих пор представления о происхождении и ранней эволюции Солнечной системы не приобрели характера законченной теории. Тем не менее считается, что основные события, происходившие во время зарождения Солнца и планет, уже во многом установлены. Выделяют [1] несколько этапов (рис. 6.4):

1. Сначала произошло уплотнение облака межзвездного вещества, состоящего из молекул (Н2, Н2О, ОН и др.) и пыли. Возможно, что уплотнение было обусловлено взрывом сверхновой звезды под действием ударной волны, которая распространилась от нее во все стороны. Продукты взрыва проникли в межзвездную пыль, которая впоследствии вошла в состав углистых хондритов (самых древних каменных метеоритов).

2. Наиболее плотные участки облака с массами порядка звездных начинают сжиматься. Облако распадается на фрагменты, один из которых впоследствии порождает Солнце и Солнечную систему. В центре сжимающегося фрагмента образуется сгущение пыли и газа, которое является ядром аккреции. (Аккреция - захват окружающей разреженной среды, приток которой постепенно увеличивает массу ядра.)

3. Через 104- 105 лет после начала сжатия фрагмента масса центрального сгущения достигает примерно 0,1 массы Солнца, вещество становится непрозрачным, температура возрастает и пыль испаряется. После испарения пыли происходит диссоциация (распад) молекулярного водорода. При этом центральное сгущение сжимается, образуя газовое Протосолнце, которое формируется очень быстро (10-100 лет). В результате аккреции межзвездного вещества Протосолнцем его масса и радиус увеличиваются. Примерно через 105 лет масса достигает современного уровня, а радиус становится примерно в 100 раз больше современного.

 


Приток межзвездного вещества прекращается, и начинается стадия гравитационного сжатия Протосолнца. В течение этого периода уже существует дискообразная газово-пылевая протопланетная туманность (ППТ), центром которой является Протосолнце. Оценки максимальной массы ППТ в разных теоретических моделях различны: от 0,01 до 2 масс Солнца. При этом не исключено, что диск ППТ приобретает кольцевую структуру, а во внешней его части начинается формирование планет-гигантов, которое происходит в общем так же, как и образование Протосолнца, включая образование дисков; впоследствии из них формируются системы спутников.

4. Следующий период занимает около 108 лет. Продолжается гравитационное сжатие Протосолнца. Размеры его уменьшаются, приближаясь к современным. Мощный звездный ветер выметает газ из внутренней части ППТ, а во внешней ее части продолжается формирование планет-гигантов. Пылевое вещество ППТ все более концентрируется у некоторой средней плоскости. Вследствие роста концентрации пылинки сталкиваются, появляются все более крупные частицы, идет процесс аккумуляции (роста) твердых тел. Происходит преимущественный рост больших тел за счет малых. Наиболее крупные тела, подобные астероидам, — это планетезимали, зародыши планет. Особо крупные тела становятся ядрами аккреции, вокруг которых происходит формирование планет земной группы. Рост Земли до современных размеров продолжался, по-видимому, около 108 лет (есть оценки 105 лет). На поверхности планет обрушивались огромные глыбы планетезималей, образовывались гигантские кратеры, часть вещества выбрасывалась в пространство, материал поверхностей непрерывно перерабатывался. Согласно некоторым моделям, процесс аккреции был неоднородным — вначале накапливались тяжелые и менее тугоплавкие элементы (железо), а силикатные мантии образовались позже. Не все ученые согласны с приведенным описанием процесса образования планет земной группы. Так, в соответствии с альтернативной гипотезой их родоначальниками были крупные протопланеты (подобные Юпитеру или Сатурну), которые потеряли газовую оболочку из-за приливного взаимодействия с Солнцем.

В картине образования Вселенной, галактик, звезд, планет много неясного. Однако познание тонких механизмов эволюции Вселенной и ее частей продолжается. В частности, современная наука дает основания полагать, что у многих звезд существуют планетные системы. Какие именно звезды обладают планетными системами, аналогичными Солнечной? Обитаемы ли эти планетные системы, и если да, то часто ли встречается во Вселенной разумная жизнь? В последние десятилетия эту проблему исследуют на научной основе.