ХИМИЧЕСКИЕ ПРЕОБРАЗОВАНИЯ ВЕЩЕСТВА 5 страница

Воздух перемещается в горизонтальном направлении (ветер). Средняя многолетняя скорость ветра у земной поверхности 4— 9 м/с. Максимальная наблюдается у побережья Антарктиды -22 м/с с порывами до 100 м/с. С высотой скорость ветра возрастает, достигая сотен метров в секунду. Направление ветра определяется той стороной горизонта, с которой он дует, и зависит от распределения давления и отклоняющего действия вращения Земли. Воздух стремится перемещаться от большего давления к меньшему по кратчайшему пути, отклоняясь влево в Южном полушарии и вправо - в Северном (рис. 8.4). Схема поясов господствующих ветров осложняется влиянием материков и океанов, формированием сезонных минимумов и максимумов давления над сушей. На границе материков и океанов ветры зимой дуют с материка на океан, летом - с океана на материк (муссонные ветры). В зависимости от характера рельефа, растительности, водоемов возникают местные ветры (бризы, фен, бора и т.д.).

В тропосфере постоянно образуются вихри из-за различного атмосферного давления и отклоняющего действия вращения Земли. В замкнутой области пониженного давления воздух устремляется к центру, отклоняясь вправо в Северном полушарии и влево - в Южном. В центре он поднимается и растекается в стороны, тоже отклоняясь. Образуется восходящий вихрь - циклон, а у поверхности формируется область пониженного давления с циклической системой ветров (от периферии к центру). В замкнутой области повышенного давления формируется нисходящий вихрь - антициклон, а у поверхности - область повышенного давления с антициклической системой ветров (от центра к периферии). Циклоны и антициклоны особенно часто возникают в умеренных широтах. Диаметр их достигает 3—4 тыс. км при высоте до 18-20 км. Циклоны, возникающие в тропических широтах (тайфуны, ураганы), отличаются большей скоростью ветра. Разрушительной силой обладают сравнительно небольшие вихри (смерчи и торнадо).

Вода в атмосфере содержится в виде пара, капелек и кристалликов. Процентное отношение количества водяного пара, содержащегося в воздухе, к тому количеству, которое может содержаться при данной температуре, именуется относительной влажностью. Чем выше температура воздуха, тем больше водяного пара он может содержать. Водяной пар поступает в атмосферу в результате испарения с поверхности. При понижении температуры в атмосфере может начаться конденсация, которая проявляется в виде росы, инея, тумана, облаков. Различают облака перистые (облака верхнего яруса — выше 6000 м; они полупрозрачные, ледяные; осадки из них не выпадают); слоистые (среднего яруса - от 2000 до 6000 м и нижнего - менее 2000 м), которые в основном и дают осадки, обычно длительные, обложные; кучевые (могут образовываться в нижнем ярусе и достигать очень большой высоты; с ними связаны ливни, град, грозы). Наибольшая облачность наблюдается в областях пониженного давления; наименьшая - в областях повышенного давления. Над океаном она больше, чем над сушей, так как здесь в воздухе больше влаги. Абсолютный максимум облачности - над Северной Атлантикой, абсолютный минимум - над Антарктидой и тропическими пустынями. Облака задерживают солнечную радиацию, идущую к земной поверхности, отражают и рассеивают ее, а также задерживают тепловое излучение земной поверхности.

Выпадающие осадки могут быть жидкими (дождь) и твердыми (снег, крупа, град). Осадки измеряются слоем воды (в миллиметрах), который образуется, если выпавшая вода не стекает и не испаряется. В среднем за год на Землю выпадает 1130 мм осадков, из них почти половина - в экваториальных широтах. В направлении от экваториальных широт к тропическим количество осадков убывает. В умеренных широтах их количество снова увеличивается, в полярных - убывает. Над океаном осадков выпадает больше, чем над сушей, над холодными течениями осадков меньше, чем над теплыми. На характер распределения осадков на суше влияют удаленность от океана и рельеф земной поверхности. Больше всего осадков на наветренных склонах гор, с высотой их количество убывает, причем выше снеговой линии твердые осадки не успевают таять и накапливаются в виде снежников и ледников. Благодаря малой теплопроводности снег предохраняет почву от промерзания, растения — от гибели; в нем накапливаются запасы воды, расходуемые летом. Талые воды пополняют запасы грунтовых вод, озер и рек. Абсолютный максимум осадков зарегистрирован в Черапунджи (Индия) - 26 461 мм/год, абсолютный минимум - в пустынях Атакама и Ливийская, где осадки выпадают не каждый год. Но только по количеству выпадающих осадков нельзя судить об обеспеченности территории влагой - увлажнении. Необходимо учитывать возможное испарение (испаряемость), которое зависит от количества солнечной радиации: чем радиации больше, тем больше может испариться влаги. По степени увлажнения выделяются влажные (гумидные) и сухие (аридные) области.

Атмосфера Земли представляет собой взаимосвязанную систему движущихся объемов воздуха. Большие объемы воздуха в тропосфере, обладающие примерно одинаковыми свойствами, называются воздушной массой. Для нее характерно общее направление перемещения. Свои свойства (температуру, влажность, запыленность) воздушная масса приобретает, соприкасаясь с подстилающей поверхностью, над которой задерживается. Выделяются главные (зональные) типы воздушных масс, формирующиеся в широтных поясах с разным атмосферным давлением: экваториальная - теплая и влажная; две тропические - теплые и над материками сухие; две воздушные массы умеренных широт - менее теплые и более влажные, чем тропические, но более теплые и влажные, чем арктическая и антарктическая; арктическая и антарктическая - холодные и сухие. Кроме поясов постоянного пребывания воздушных масс возникают пояса, в которых зимой господствует одна воздушная масса, летом - другая. Например, умеренный воздух формируется из тропического и арктического (антарктического).

Все воздушные массы связаны между собой общей циркуляцией в тропосфере. Внутри главных (зональных) типов воздушных масс существуют континентальный (материковый) и океанический (морской) подтипы. Главными факторами циркуляции выступают лучистая энергия Солнца, вращение Земли вокруг оси и характер земной поверхности.

Для анализа процессов и явлений разного пространственно-временного масштаба, происходящих в атмосфере, существенны такие понятия, как погода и климат. Погода — состояние атмосферы в данной местности в данный момент или за какой-то промежуток времени (сутки, неделю, месяц). Погода характеризуется элементами (температура воздуха, влажность, давление) и явлениями (ветер, облака, атмосферные осадки). Иногда явления погоды носят необычайный или катастрофический характер: ураганы, грозы, ливни, засухи. Главные причины изменения погоды - изменение количества солнечного тепла, перемещение воздушных масс, атмосферных фронтов, циклонов и антициклонов.

Климат это многолетний режим погоды, характерный для какой-либо местности. Он проявляется в закономерной смене всех наблюдаемых в этой местности погод. Как и погода, климат зависит от количества солнечной радиации, от перемещения воздушных масс, атмосферных фронтов, циклонов и антициклонов и от свойств подстилающей поверхности. Основные показатели климата: температура воздуха (средняя годовая, января и июля), преобладающее направление ветров, годовое количество и режим осадков.

В соответствии с тепловыми поясами и поясами господства зональных типов воздушных масс выделяют климатические пояса. Основных климатических поясов семь: экваториальный, два тропических, два умеренных, два полярных (арктический и антарктический). Между основными расположены переходные климатические пояса: два субэкваториальных, два субтропических и два субполярных. Они различаются сменой воздушных масс: зимой господствует воздушная масса основного пояса, соседнего со стороны полюса, летом — соседнего со стороны экватора. Выделяют материковые и морские климаты: они различаются годовыми амплитудами колебания температуры и количеством осадков. На границе материков и океанов, там, где ветры по сезонам изменяют направление почти на противоположное (зимой - с суши, летом - с океана), господствует муссонный климат, характеризуемый теплым, дождливым летом и холодной, сухой зимой (на востоке Евразии, на границе с Тихим океаном). На материках на климат влияет рельеф. В горах чем выше, тем холоднее, даже на экваторе вершины гор покрыты снегом. В поднимающемся по склонам воздухе количество осадков сначала увеличивается, а затем начинает убывать, т.е. для гор характерна высотная поясность климата. Однако на любой высоте климат зависит от широты местности, поскольку продолжительность дня (солнечная радиация) остается такой же, как в климатическом поясе у подножия.

Климат изменяется с течением времени [2, 17, 29, 32], и на то существует много причин. Так, изменение угла наклона земной оси к орбите вызывает изменение положения границ тепловых, а значит, и климатических поясов. Изменение площадей, расположения материков и океанов влечет за собой значительные изменения климатов на всей Земле. На климат влияют сильные извержения вулканов, выбрасывающие в атмосферу огромное количество газов, пыли, пепла и водяного пара. В последние десятилетия растет антропогенное воздействие на климат, связанное с деятельностью людей: увеличение содержания СО2, запыленность, выбросы теплоты и т.д. влияют на состояние атмосферы; сведение лесов, создание водохранилищ, орошение и осушение территорий, сокращение площадей, покрытых льдом, как на суше, так и в океане, изменяя земную поверхность, также вызывают изменения климата.

 

§ 8.4. Геодинамические процессы

Эндогенные (внутренние) процессы

Облик нашей планеты не является чем-то застывшим, раз и навсегда сформировавшимся. Благодаря разнообразным геодинамическим процессам происходит постоянное видоизменение земной коры и ее поверхности, создаются условия для возникновения новых горных пород и разрушения уже существующих. Эти процессы делят на две большие группы — эндогенные (внутренние) и экзогенные (внешние). Геодинамические процессы тесно связаны в пространстве и во времени, а само их взаимодействие имеет сложный и во многом противоречивый характер.

Рассмотрим основные геодинамические процессы и некоторые результаты их взаимодействия. Эндогенными называют процессы, вызванные преимущественно внутренними силами Земли и происходящие в ее недрах. Они обусловлены энергией, выделяемой при развитии вещества Земли, действием силы тяжести и сил, возникающих при вращении Земли, а проявляются в виде тектонических движений (медленные поднятия и опускания земной коры, складчатости, образование крупных элементов рельефа, землетрясения), процессов магматизма (выплавления, перемещения и застывания магмы), метаморфизма горных пород и формирования месторождений полезных ископаемых [1, 10, 12, 22, 35].

Тектонические движения приводят к деформациям (нарушениям) верхних частей земной коры. Выделяют разрывные нарушения, сопровождаемые перемещением разорванных частей геологических тел друг относительно друга, и складчатые нарушения, когда происходит изменение залегания слоев без изменения сплошности горных пород, т.е. возникают изгибы пластов - складки; процесс их образования называют складкообразованием или складчатостью.

Тектонические движения можно разделить на горизонтальные и вертикальные. Горизонтальные движения играют значительную роль в формировании литосферы и рельефа земной поверхности и находятся в фокусе внимания тектоники литосферных плит, которая в настоящее время стала, пожалуй, наиболее универсальной концепцией, объясняющей многие явления на Земле.

В основе этой концепции лежат следующие положения [1, 28-30, 35]. Верхняя часть Земли разделяется на две оболочки - жесткую и хрупкую литосферу и более пластичную и подвижную астеносферу. Литосфера подразделяется на некоторое количество плит (рис. 8.5). Основанием для их разграничения служит размещение очагов землетрясений, так как сейсмическая энергия в основном выделяется на границах между плитами. В большинстве случаев, хотя и не всегда, эти границы четко выражены.

Наблюдают три рода взаимных перемещений плит: О дивергентные границы, вдоль которых происходит раздвижение плит (спрединг);

конвергентные границы, вдоль которых происходит сближение плит, обычно выражающееся в пододвигании одной плиты под другую. При этом возможны: субдукция, когда океанская плита пододвигается под континентальную (образуется аккреционная призма, наращивающая континентальную, окраинную или островную дугу); обдукция, когда океанская плита (кора, литосфера) надвигается на континентальную; коллизия, когда сталкиваются две континентальные плиты (обычно с поддвигом одной под другую), которая порождает сложную коровую структуру и горообразование;

трансформные границы, вдоль которых происходит горизонтальное скольжение одной плиты относительно другой по плоскости вертикального трансформного разлома.

В природе преобладают границы первых двух типов. Причем дивергентные границы приурочены к осевым зонам срединно-океанических хребтов и межконтинентальным рифтам (крупным линейным тектоническим структурам земной коры, образовавшимся главным образом при горизонтальном растяжении коры), а конвергентные - к осевым зонам глубоководных желобов, сопряженных с островными дугами. На дивергентных границах происходит непрерывное рождение новой океанической коры, которая перемещается астеносферным течением в сторону зон субдукции, где она поглощается на глубине. Считается, что объем поглощаемой в зонах субдукции океанической коры равен объему коры, образующейся в зонах спрединга. Благодаря этому радиус и объем Земли остаются более или менее постоянными.

Основной причиной горизонтального движения плит считается конвекция в мантии, вызываемая ее разогревом. При этом срединно-океанические хребты с их рифтами располагаются над восходящими ветвями течений, а глубоководные желоба - над нисходящими. Новообразованная океаническая литосфера движется к желобам, постепенно охлаждаясь, уплотняясь и увеличивая свою мощность за счет астеносферы. Результатом этого являются нисходящие вертикальные движения. В конечном счете океанская литосфера становится тяжелее подстилающей астеносферы и погружается в нее вдоль океанских склонов глубоководных желобов.

Вертикальные движения имеют еще более разнообразные причины. Поднятия могут быть обусловлены подъемом более легких выплавок из астеносферы (который одновременно служит причиной расходящихся горизонтальных движений), а также разогревом литосферы над этими восходящими горячими мантийными струями. Опускания в океанах связаны с охлаждением литосферы по мере ее удаления от осей спрединга и максимальны в зонах глубоководных желобов. В зонах, выходящих на поверхность вдоль осей желобов, опускание вновь сменяется поднятием вследствие скучивания, нагромождения осадков и накопления продуктов вулканической деятельности. Процессы регионального метаморфизма и гранитообразования ведут здесь к увеличению мощности легкой континентальной коры, а это в свою очередь приводит к ее всплыванию. С данным процессом связано образование первичных горных сооружений. Вторичные горные сооружения формируются под влиянием столкновения континентальных плит, в результате чего увеличивается тепловой поток, что способствует подъему астеносферы и росту поднятий. Считается, что опускание территории может быть связано с формированием ледникового щита (Антарктида, Гренландия) и подъемом областей, освободившихся от ледникового покрова благодаря снятию нагрузки (Балтийский и Канадский щиты).

Землетрясениями называют подземные толчки и колебания земной поверхности, возникающие в результате внезапных смещений и разрывов в земной коре или верхней части мантии и передающиеся на большие расстояния в виде упругих колебаний. Наблюдения за землетрясениями ведутся с древнейших времен. Детальные описания землетрясений, наблюдавшихся с середины I тысячелетия до н.э., даны японцами. Систематические инструментальные наблюдения начаты во второй половине XIX в. (Б.Б. Голицын, Э. Вихерт, Б. Гутенберг, А. Мохоровичич, Ф. Омори и др.).

Сильные землетрясения носят катастрофический характер, уступая по числу жертв только тайфунам и значительно (в десятки раз) опережая извержения вулканов. Количество слабых землетрясений гораздо больше, чем сильных. Так, на сотни тысяч землетрясений, ежегодно наблюдаемых на Земле, приходятся единицы катастрофических.

Территориальное распределение землетрясений неравномерно и определяется перемещением и взаимодействием литосферных плит. Известны два главных сейсмических пояса: Тихоокеанский, охватывающий кольцом берега Тихого океана, и Средиземноморский, простирающийся через юг Евразии от Пиренейского полуострова на западе до Малайского архипелага на востоке. В пределах океанов значительной сейсмической активностью отличаются срединно-океанические хребты. Очаги землетрясений располагаются на глубинах до 700 км, но 3/4 сейсмической энергии выделяется в очагах, находящихся на глубине не более 70 км. Размер очага катастрофических землетрясений может достигать сотен и тысяч километров.

Область наибольших разрушений располагается вокруг эпицентра — проекции на земную поверхность места начала перемещения масс — гипоцентра.

Интенсивность проявления землетрясений на поверхности измеряется в баллах и зависит от глубины очага и магнитуды землетрясения, служащей мерой его энергии. Известное максимальное значение магнитуды близко к 9. С увеличением магнитуды на единицу энергия возрастает в 100 раз, например при толчке с магнитудой 6 высвобождается в 100 раз больше энергии, чем при магнитуде 5. Шкала магнитуд именуется шкалой Рихтера. Наряду с ней используют ряд сейсмических шкал, которые можно свести к трем основным группам.

В России применяется наиболее широко используемая в мире 12-балльная шкала MSK-64 (Медведева-Шпонхойера-Карника), восходящая к шкале Меркали-Канкани (1902), в странах Латинской Америки принята 10-балльная шкала Росси-Фореля (1883), в Японии - 7-балльная шкала. Оценка интенсивности, в основу которой положены бытовые последствия землетрясения, в шкале MSK-64 зафиксирована следующим образом:

1 балл - не ощущается никем, регистрируется только сейсмическими приборами;

2 балла — иногда ощущается людьми, находящимися в спокойном состоянии;

3 балла - ощущается немногими, более заметно в помещениях на верхних этажах;

4 балла - ощущается многими (особенно в помещениях), в ночное время некоторые просыпаются. Возможны звон посуды, дребезжание стекол, хлопанье дверей;

5 баллов - ощущается почти всеми, многие ночью просыпаются. Качаются висячие предметы, появляются трещины в оконных стеклах и штукатурке;

6 баллов - ощущается всеми, осыпается штукатурка, легкие разрушения зданий;

7 баллов - появляются трещины в штукатурке и откалываются отдельные ее куски, тонкие трещины в стенах. Ощущаются толчки в автомобилях;

8 баллов - большие трещины в стенах, падение труб, памятников. Трещины на крутых склонах и в сыром грунте;

9 баллов - обрушение стен, перекрытий кровли в некоторых зданиях, разрывы подземных трубопроводов;

10баллов - обвалы многих зданий, искривление железнодорожных рельсов. Оползни, обвалы, трещины (до 1 м) в грунте;

11баллов - многочисленные широкие трещины в земле, обвалы в горах, обрушение мостов, только немногие каменные здания сохраняют устойчивость;

12баллов - значительные изменения рельефа, отклонение течения рек, предметы подбрасываются в воздух, тотальное разрушение сооружений.

Сильные землетрясения ощущаются на расстоянии тысячи километров и более. Так, в Москве время от времени наблюдаются толчки интенсивностью до 3 баллов как «эхо» катастрофических карпатских землетрясений в горах Вранча в Румынии; эти же землетрясения в близкой к Румынии Молдавии ощущаются как 7-8-балльные. Продолжительность землетрясений различна. Например, землетрясение на острове Лисса в Средиземном море длилось три года (1870-1873), общее количество толчков составило 86 тыс.

Всякое землетрясение с магнитудой свыше 7 может стать крупной катастрофой. Однако оно может остаться и незамеченным, если произойдет в пустынном районе. Например, в результате Гоби-Алтайского землетрясения 1957 г. с магнитудой 8,5 и интенсивностью 11-12 баллов возникли два озера, мгновенно образовался огромный надвиг в виде каменной волны высотой до 10 м, максимальное смещение по сбросу достигло 300 м и т.п.; территория размером с Данию или Голландию была полностью разрушена. Если бы это землетрясение произошло в густонаселенном районе, число жертв могло измеряться миллионами.

Если землетрясения происходят в море, то они могут вызвать разрушительные волны - цунами, наиболее часто опустошающие побережья Тихого океана, как это произошло в 1933 г. в Японии и в 1952 г. на Камчатке. Общее число жертв землетрясений на планете за последние 500 лет составило около 5 млн человек, почти половина из них приходится на Китай. Большие потери при землетрясениях обычно связаны с высокой плотностью населения, примитивными методами строительства, особенно характерными для бедных регионов.

В конце XX в. деятельность человека, принявшая планетарные масштабы, стала причиной искусственно вызываемой сейсмичности, возникающей, например, при ядерных взрывах (испытания на полигоне Невада (США) инициировали тысячи сейсмических толчков), при строительстве водохранилищ, заполнение которых иногда провоцирует сильные землетрясения. Так случилось в Индии, когда сооружение водохранилища Койна вызвало 8-балльное землетрясение, при котором погибло 177 человек.

Магматизм - процесс выплавления магмы, ее дальнейшего развития, перемещения, взаимодействия с твердыми горными породами и застывания. Магма - это расплавленная масса, образующаяся в глубинных зонах Земли. При внедрении магмы в земную кору или при ее излиянии на поверхность Земли формируются магматические горные породы. Магма периодически образует отдельные очаги в разных по составу и глубинности оболочках Земли.

Магматизм - проявление глубинной активности Земли, тесно связан с ее развитием, тепловой историей и тектонической эволюцией. По глубине проявления магматизм разделяют на абиссальный (глубинный), гипабиссальный (проявившийся на небольшой глубине) и поверхностный (вулканизм). В результате магматизма формируются: интрузивные тела и горные породы - в процессе внедрения в толщу земной коры расплавленной магмы и эффузивные - в процессе излияния жидкой лавы из глубин Земли на поверхность с образованием лавовых покровов и потоков.

Вулканизм — совокупность явлений, обусловленных, проникновением магмы из глубин Земли на ее поверхность. Вулканизм приводит к появлению на поверхности Земли огромного количества вулканического материала (вулканическое стекло, пепел, газы и т.д.), а также к формированию такого грандиозного образования, как вулкан, который возникает над каналами и трещинами в земной коре. Именно по этим каналам и трещинам на земную поверхность извергаются лава, пепел, горячие газы, пары воды и обломки горных пород.

По степени активности различают действующие, уснувшие и потухшие вулканы, а по форме - центральные, извергающиеся из центрального выводного отверстия, и трещинные, вулканические аппараты которых имеют вид зияющих трещин или ряда небольших конусов. Основными частями вулканического аппарата являются магматический очаг (в земной коре или верхней мантии); жерло - выводной канал, по которому магма поднимается к поверхности; конус - возвышенность на поверхности Земли из продуктов выброса вулкана; кратер - углубление на поверхности конуса вулкана. Современные вулканы расположены вдоль крупных разломов и тектонически подвижных областей (главным образом на островах и берегах Тихого и Атлантического океанов). Среди активных действующих вулканов назовем Ключевскую сопку и Авачинскую сопку (Камчатка, Россия), Везувий (Италия), Исалько (Сальвадор), Мауна-Лоа (Гавайские о-ва).

Экзогенные (внешние) процессы

Экзогенными называют процессы, которые происходят на поверхности Земли или на небольшой глубине в земной коре и обусловлены энергией солнечного излучения, гравитационной силой и жизнедеятельностью организмов. Сущность экзогенных процессов сводится к следующему [8, 13, 26, 33]:

выветривание - механическое разрушение горных пород и химическое преобразование слагающих их минералов;

денудация- удаление и перенос разрыхленных и растворенных продуктов разрушения горных пород водой, ветром и льдом. Большое влияние на ее темпы и характер оказывают размах и скорость тектонических движений, а также климатические условия территории. Преобладание денудации над тектоническим поднятием со временем приводит к снижению абсолютных и относительных высот региона и общему нивелированию рельефа;

аккумуляция- отложение этих продуктов в виде осадков на суше или на дне водных бассейнов.

Процесс совместного формирования рельефа и рыхлых отложений в свою очередь именуется морфолитогенезом. Так, в результате деятельности реки формируются и ее долина, и отложения (аллювий).

Основу всех экзогенных процессов составляет выветривание — процесс механического разрушения и химического изменения горных пород и минералов в условиях земной поверхности и приповерхностных слоев литосферы, происходящий под влиянием различных атмосферных агентов (атмосферные осадки, ветер, сезонные и суточные колебания температуры воздуха, воздействие на породы атмосферного кислорода и др.), грунтовых и поверхностных вод, жизнедеятельности растительных и животных организмов и продуктов их разложения. Выветривание имеет большое значение для подготовки вещества к его транспортировке; с ним тесно связано почвообразование - зарождение и формирование почвы.

Склоновые процессы — класс экзогенных явлений. Их широкое распространение связано с тем, что большая часть земной поверхности представляет собой склоны - наклонные участки поверхности, формирующиеся в результате эндогенных и экзогенных процессов. Характер склонов определяется составом и строением слагающих пород, абсолютными и относительными высотами местности, интенсивностью склоновых процессов, особенностями климата, растительности и других компонентов природной среды, экспозиции склонов. По преобладанию гравитационных движений того или иного вида и характеру рельефообразующих процессов выделяют склоны обвальные, оползневые и др. Механизмы их достаточно разнообразны. Например, оползни (скользящее смещение масс горных пород вниз по склону под влиянием силы тяжести) могут образовываться вследствие подмыва склона, переувлажнения, сейсмических толчков и др.; солифлюкционные процессы развиваются в результате медленного передвижения почв и рыхлых грунтов под влиянием попеременного протаивания - промерзания и силы тяжести.

Преобразованию земной поверхности в огромной мере способствуют флювиалъные (эрозионно-аккумулятивные) процессы — совокупность процессов, осуществляемых текучими поверхностными водными потоками. Водные потоки разделяют на постоянные (реки) и временные, а временные в свою очередь - на русловые (овраги и балки) и нерусловые (склоновые) [15]. Результатом флювиальных процессов является размыв водными потоками земной поверхности в одних местах и одновременный перенос и отложение продуктов размыва в других, в результате чего в одно и то же время образуются как выработанные (эрозионные), так и аккумулятивные формы рельефа.

Флювиальные процессы развиваются в пределах речных бассейнов, в которые входят речные, овражно-балочные и склоновые системы. Центральным элементом речных бассейнов являются реки - водные потоки, текущие в естественных руслах и питающиеся за счет поверхностного и подземного стока со своих бассейнов. Реки разделяются на две группы: горные реки с быстрым течением, текущие обычно в узких долинах, и равнинные реки, имеющие более медленное течение и широкие террасированные долины. Наиболее крупные реки: в Российской Федерации - Обь, Енисей, Амур, Лена, Волга; в зарубежных странах — Нил, Миссисипи, Амазонка, Янцзы. Реки характеризуются своим режимом - изменением уровней, расходом, скоростью течения, температурой воды и другими явлениями, зависящими главным образом от характера питания рек и климатических условий местности, по которой они протекают. Суммарный годовой сток рек в Мировой океан -42 тыс. км3. Реки - важнейший элемент природной среды: источник питьевой и промышленной воды, естественный водный путь, постоянно возобновляемый источник гидроэнергии, местообитание рыб и других пресноводных организмов, а также водной растительности.

Гляциалъные процессы — процессы, связанные с деятельностью льда, т.е. с современным или прошлым оледенением территории. Такие процессы могут развиваться при условии оледенения некоторой территории — достаточно длительного существования большого количества льда в пределах участка земной поверхности, в первую очередь в виде ледников - движущихся скоплений льда. Эрозионная деятельность ледников (экзарация) сводится к выпахиванию коренного ложа ледника обломками горных пород, вмерзшими в движущийся лед, аккумулятивная деятельность - к формированию специфических отложений в виде скопления несортированных обломков горных пород, переносимых или отложенных ледниками образований, — морены. В геологическом прошлом наиболее крупные колебания климата приводили к чередованию ледниковых эпох (ледниковий) и межледниковий. В наиболее близкое к нам время - в плейстоцене - насчитываются шесть ледниковых периодов и пять межледниковий. В результате таяния ледников образуются мощные водные потоки, которые формируют флювиотяциальные отложения (отложения водно-ледниковых потоков) и рельеф. В районах, характеризующихся отрицательной температурой горных пород и почв, наличием подземных льдов и многолетней мерзлоты, получили распространение специфические, криогенные процессы: пучение и наледеобразование; криогенное выветривание, морозная сортировка, криогенный крип, солифлюкция и др.; морозное растрескивание; термокарст.