Обзор фундаментальных концепций, связанных с энергией.

Лекция 5

Функция экосистемы

Пищевые цепи и сети.

Экологическая ниша.

3. Обзор фундаментальных концепций, связанных с энергией.

Биологическая продуктивность экосистемы.

5. Экологические пирамиды.

Пищевые цепи и сети.

Организмы разных трофических групп, связанные в процессе питания и передачи энергии от зеленых растений к фитофагам и хищникам, образуют пищевые цепи. Перенос энергии от её источника – автотрофов (растений) – через ряд организмов, происходящий путём поедания одних организмов другими, называется пищевой цепью. При каждом очередном переносе большая часть (80 – 90%) потенциальной энергии теряется, переходя в тепло. Поэтому, чем короче пищевая цепь, тем больше количество энергии доступной для популяции.

Пищевые цепи делятся на два основных типа:

1. Пастбищная цепь, которая начинается с зелёного растения и идёт далее к пасущимся растительноядным животным и к хищникам.

2. Детритная цепь, которая от мертвого органического вещества идёт к микроорганизмам, а затем к детритофагам и их хищникам. Эти цепи могут быть двух типов: «детритофаг – редуцент» и «детритофаг – хищник».

В первом случае мертвое органическое вещество, съеденное и преобразованное детритофагами, разрушается после их смерти редуцентами до минеральных соединении, которые поступают в почвенный раствор и повторно используются продуцентами. В разрушении этого вещества принимают участие разные организмы по принципу эстафеты. Например, при разрушении растительного опада, трупов или экскрементов животных работает целый конвейер из животных, грибов и бактерий.

Во втором случае детритофага съедает хищник, и вещества детрита, потребленного детритофагом, вовлекаются в круговорот, минуя стадию полного разрушения и потребления продуцентами. Например, дождевой червь, питающийся опавшими листьями, будет съеден птицей. Личинки мухи-падальщицы, питающиеся на трупе животного, могут стать пищей травяной лягушки, которую, в свою очередь, съест уж.

Пищевые цепи «детритофаг – хищник» широко распространены в природе и используются в хозяйстве человека (откорм домашней птицы дождевыми червями или личинками мух). Пищевые цепи «детритофаг – редуцент» играют важную роль для повышения плодородия почв: запас питательных элементов в почвенном растворе должен быстро пополняться продуктами разложения детрита (в том числе и мертвых детритофагов).

Приведенные примеры упрощают действительную картину, так как одно и то же растение может быть съедено разными травоядными животными, а они, в свою очередь, стать жертвами разных хищников. Лист растения может съесть гусеница или слизень, гусеница может стать жертвой жука или насекомоядной птицы, которая может заодно склевать и самого жука. Жук может стать также жертвой паука. Поэтому в реальной природе складываются не пищевые цепи, а пищевые сети.

 

Экологическая ниша.

Автотрофные организмы экосистемы усваивают солнечную энергию и производят органическое вещество, которое перерабатывается гетеротрофами. Редуценты разлагают органическое вещество, возвращая составляющие его минеральные элементы в почвенный раствор. В этом сложнейшем «производстве» участвуют популяции разных видов. Каждая популяция занимает некоторое пространство и потребляет различные ресурсы в определенное время (в разное время суток, в разные сезоны года). Совокупность всех факторов среды, в пределах которых возможно существование популяции (местообитания, используемых ею ресурсов и ритма их потребления в экосистеме), называется экологической нишей.

Крупный американский эколог Ю. Одум очень удачно назвал экологическую нишу профессией вида в экосистеме. Действительно, она отражает то, из каких веществ (неорганических, органических веществ живых растений или животных, детрита), какую продукцию и для какого потребителя производит вид (то есть кого вид ест и кто ест его). Кроме того, экологическая ниша включает и «график работы»: есть животные ночные (сова, летучая мышь) и дневные; работающие «круглый год» и «уходящие в отпуск» на холодный период (медведь); постоянно работающие «на одном месте» и подрабатывающие часть года «на стороне» (птицы, мигрирующие в холодное время года в теплые края).

Разделение популяциями разных видов пространства и ресурсов называется дифференциацией экологических ниш. Это наиболее наглядно у животных. Представители разных видов имеют неодинаковые рационы питания. Птицы потребляют разные плоды и семена растений, ловят разных насекомых и червей. Различаются рационы и у грызунов, и у более крупных млекопитающих. Легко наблюдать дифференциацию ниш в экосистеме озера: организмы одних видов активно плавают (нектон) или пассивно «парят» (планктон) в толще воды, а другие ведут придонный образ жизни (бентос). И у разных видов нектона, планктона и бентоса пища неодинакова.

Растения имеют один тип питания: практически у всех видов пищевой рацион включает раствор минеральных веществ, диоксид углерода и солнечный свет. Тем не менее, и у них экологические ниши дифференцированы. Есть растения светолюбивые и теневыносливые; их корневые системы расположены на разной глубине; им требуются различные элементы минерального питания и неодинаковое количество воды; в разное время они цветут и плодоносят; имеют собственных опылителей.

Главный результат дифференциации ниш – снижение конкуренции. Теневыносливые растения не конкурируют со светолюбивыми, а довольствуются полумраком под пологом деревьев. Менее остра конкуренция за ресурсы почвенного питания между растениями, если корневая система одного из них сконцентрирована у поверхности почвы, а другого – уходит в более глубокие слои. Во время цветения растениям требуется особенно много ресурсов, и цветение по очереди также снижает конкуренцию.

Принцип дифференциации экологических ниш используется в сельском хозяйстве: выращивание совместно нескольких сортов или даже нескольких видов растений (так называемые сортосмеси и поликультуры) позволяет за счет снижения конкуренции между культурными растениями и более полного использования ресурсов почвы и света повышать урожай. При этом отсутствие свободных ниш снижает засоренность посевов, и можно обходиться без гербицидов.

Дифференциация ниш у животных может сопровождаться сигналами, извещающими о том, что участок занят (волки и лисы метят мочой стволы деревьев, птицы поют), а у растений, как правило, нет специальных сигнальных механизмов для отграничения своей экологической ниши, хотя некоторые могут выделять в атмосферу или почву вещества, препятствующие росту соседей.

У организмов каждого вида различаются две экологические ниши – фундаментальная и реализованная.

В лесной зоне европейской части России на лугах преобладают невысокие злаки с узкими листьями – полевица тонкая, душистый колосок, овсяница красная. Эти растения хорошо приспособлены к произрастанию на бедных элементами питания подзолистых почвах. Если собрать их семена, высеять на грядки и удобрить минеральными азотными удобрениями или навозом, то урожайность этих невысоких растений может возрасти в 3–4 раза. Если же удобрить естественные луга с преобладанием мелких злаков, то эти злаки могут вообще исчезнуть из травостоя. Основными растениями (доминантами) в нем станут злаки с широкими листьями – ежа сборная, овсяница луговая и особенно пырей ползучий, которых до этого в травостое было немного.

Объяснить, почему душистый колосок или полевица тонкая в искусственном посеве и естественной экосистеме по-разному реагирует на удобрение, помогает концепция двух ниш.

Фундаментальная ниша – это те условия среды, в которых вид может существовать и даже процветать при отсутствии конкуренции. Реализованная ниша– это часть фундаментальной ниши, которую вид способен отстоять от конкурентов при их наличии.

В условиях бедных почв пырей или ежа сборная, требовательные к элементам минерального питания, растут плохо, а узколистные мелкие злаки за счет «верблюжьего характера» (особенностей корневой системы и «умения» экономить питательные вещества) – хорошо. И потому они побеждают в конкуренции с широколистными злаками.

Широколистные злаки, напротив, хорошо растут на богатых почвах, на которых душистый колосок и другие виды бедных почв не способны конкурировать с ними. Таким образом, у душистого колоска и других луговых злаков лесной зоны фундаментальная ниша охватывает и бедные, и богатые почвы, а реализованная – только бедные.

Чтобы растение могло освоить всю фундаментальную нишу, его нужно защитить от конкуренции. Вот почему в ботанических садах растут растения из разных районов и чувствуют себя неплохо, пока их охраняет человек. Практически в условиях фундаментальной ниши оказываются все культурные растения, которые человек защищает от сорняков.

 

Обзор фундаментальных концепций, связанных с энергией.

Важнейшим аспектом экологии являются энергетические взаимоотношения в экологических системах. Но прежде чем перейти к изучению энергетики экосистем, нам необходимо рассмотреть некоторые основы термодинамики.

Энергию определяют, как способность производить работу. Свойства энергии описываются следующими законами.

Первый закон термодинамики, или закон сохранения энергии, гласит, что энергия может переходить из одной формы в другую, но она не исчезает и не создается заново. Поэтому энергия в экосистеме не может появиться сама собой, а поступает в нее извне – от Солнца или в результате химических реакций неорганических веществ. В гетеротрофные антропогенные экосистемы энергия поступает от специальных энергетических устройств, на которых получается электрическая энергия или с углеродистыми энергоносителями.

Все процессы, протекающие в окружающем мире, а также проводимые нами самими, делятся на две группы:

- самопроизвольные процессы, т.е. идущие сами собой. Для их проведения не только не затрачивается работа, но при определенных условиях, они сами могут произвести работу в количестве, пропорциональном происходящему изменению (например, переход теплоты от горячего тела к холодному, переход энергии заряженного аккумулятора в теплоту и т.д.). Самопроизвольные процессы ведут систему к состоянию равновесия, где силы, вызывающие процессы уравновешиваются (например, выравниваются давление, температура, концентрация и т.д.).

- несамопроизвольные процессы. Они не идут сами собой. Для их проведения необходимо затратить работу в количестве, пропорциональном происходящему изменению.

Критерии самопроизвольного или несамопроизвольного изменения системы, а также критерии равновесия устанавливает второй закон термодинамики.

Второй закон термодинамики, или закон энтропии, гласит, что процессы, связанные с превращениями энергии, могут происходить самопроизвольно только при условии, что энергия переходит из концентрированной формы в рассеянную (деградирует). Второй закон термодинамики – о снижении качества энергии. При любом превращении энергии некоторое ее количество всегда переходит в менее качественную, менее полезную, энергию. Так, лишь часть поглощенной растением солнечной энергии расходуется на продукционный процесс, остальная рассеивается при дыхании в виде тепла. При переходе энергии с первого трофического уровня (продуцентов) на второй (фитофагов и симбиотрофов), третий (хищников первого порядка) и т.д. значительное ее количество также рассеивается и снижает свое качество.

В антропогенных экосистемах – сельскохозяйственных, городских, промышленных – человек стремится уменьшить бесполезное рассеивание дорогостоящей энергии.

Энтропия (от греческого entropia - поворот, превращение) - мера количества энергии, которая становится недоступной для использования, мера изменения упорядоченности, которая происходит при деградации энергии.

Система обладает низкой энтропией, если способна создавать и поддерживать высокую степень внутренней упорядоченности за счет непрерывного рассеяния легко используемой, концентрированной энергии (например, света или пищи) и превращения ее в энергию, используемую с трудом (например, в тепловую).

Закон сохранения энергии и закон энтропии - это фундаментальные законы природы, имеющие универсальное значение. Любая искусственная или естественная система, не подчиняющаяся этим законам, обречена на гибель.

Энергия в какой-либо форме всегда пропорциональна количеству той формы энергии, в которую она переходит. "Потребленная энергия" не расходуется, она только переводится из состояния, в котором ее легко превратить в работу, в состояние с малой возможностью использования (бензин в баке автомобиля действительно расходуется, но энергия, содержащаяся в нем, не исчезает, а превращается в формы, уже неприродные для использования в автомобиле).

Еще в 1935 г. советский ученый Э.С.Бауэр в своей "Теоретической биологии" сформулировал три основные особенности живых систем.

1. Способность к самопроизвольному, без воздействия окружающей среды, изменению состояния.

2. Противодействие внешним силам, приводящее к изменению первоначального состояния окружающей среды.

3. Постоянная работа против уравновешивания с окружающей средой.

Первые две особенности встречаются и у других систем, а вот третья является отличительным признаком живых. Поэтому Бауэр назвал ее "всеобщим законом биологии", который имеет ясный термодинамический смысл - как в неживых системах устойчиво их равновесное состояние, так в живых устойчиво неравновесное.

Если неживую неуравновешенную с окружающей средой систему изолировать, то движение в ней скоро прекратится. В результате трения, теплопроводности, химических реакций и других самопроизвольных процессов потенциалы выровняются, система в целом угаснет и превратится в инертную массу материи, находящуюся в состоянии термодинамического равновесия, то есть максимальной энтропии (Пример - растворение кристаллика поваренной соли. Кристаллик - упорядоченная ионная структура, где у каждого иона было определенное место; при растворении эта структура нарушилась, произошло разупорядочение структуры, энтропия увеличилась).

Таким образом, все, что происходит в природе, ведет к увеличению энтропии в той части мира, где это происходит, включая живые системы. Последние тоже непрерывно увеличивают свою энтропию, то есть производят положительную энтропию, и приближаются к опасному состоянию максимальной энтропии - смерти. Следовательно, неравновесное состояние живых систем поддерживается за счет извлечения ими из окружающей среды отрицательной энтропии - негоэнтропии. Назначение обмена - освободиться от производимой положительной энтропии и извлечь отрицательную. Но чем выше энтропия, тем больше беспорядок, и наоборот. Поэтому извлечение негоэнтропии есть "извлечение порядка", повышение упорядоченности системы, организма.

Существует два механизма, производящих упорядоченные явления: статический, создающий порядок из беспорядка; и механизм, создающий порядок из порядка низшего уровня. Известно, что высшие животные питаются хорошо упорядоченными органическими соединениями. Использовав упорядоченность этих продуктов, животные возвращают в окружающую среду вещества в очень деградировавшей, неупорядоченной форме, там они усваиваются растениями. Для последних же мощным средством выработки отрицательной энтропии является солнечный свет, с помощью которого в хлорофилле происходит повышение упорядоченности деградировавших веществ - фотосинтез, и цикл повторяется. Это единственный на Земле естественный, самопроизвольный процесс, в котором энтропия уменьшается - за счет затраты даровой солнечной энергии. В соответствии со вторым законом, кинетическая энергия света превращается в потенциальную энергию связи органических соединений не количественно.

Таким образом, в соответствии с законами термодинамики экосистема и входящие в ее состав организмы существуют до тех пор, пока поступает энергия извне. Однократное использование энергии, протекающей через экосистему (и круговорот веществ) – основной закон функционирования экосистемы

Понять действие законов термодинамики несложно на примерах-аналогиях. Так, для нагревания чайника с водой необходима энергия. Если для этого используется газовая плита, то при нагревании воды более качественная энергия газа переходит в тепловую, часть которой идет на нагревание воды, а часть рассеивается в окружающее пространство. Если газ выключить, то вода в чайнике начнет остывать, и так будет до тех пор, пока ее температура не сравняется с температурой окружающего воздуха. (Вот почему второй закон термодинамики называют еще «законом выравнивания энергии».)