АДЕНОЗИНТРИФОСФОРНАЯ КИСЛОТА 3 страница

Амитотическое деление начинается с изменения формы и числа ядрышек. Крупные ядрышки делятся перетяжкой. Вслед за делением ядрышек происходит деление ядра. Ядро может делиться перетяжкой, образуя два ядра. В других случаях имеет место множественное разделение ядра – фрагментация. Образовавшиеся ядра могут быть неравной величины.

Амитоз встречается в отживающих, дегенерирующих клетках, которые не могут дать начало новым жизнеспособным клеткам. В норме амитотическое деление ядер встречается в зародышевых оболочках животных, в фолликулярных клетках яичника.

Амитотически делящиеся клетки встречаются при различных патологических процессах (воспаление, злокачественный рост и пр.).

 

МЕЙОЗ

Мейоз (от греч. meiosis – уменьшение) – процесс деления клеточного ядра с образованием 4-х дочерних ядер, каждое из которых содержит вдвое меньше хромосом, чем исходное ядро. Мейоз представляет собой редукционное деление: происходит уменьшение числа хромосом в клетке с диплоидного (2n) до гаплоидного (n). Мейоз сопровождает образование половых клеток у животных и спор у растений. В результате мейоза получаются гаплоидные ядра, при слиянии которых во время оплодотворения восстанавливается диплоидный набор хромосом.

Мейоз включает два последовательных деления. В каждом мейотическом делении выделяют 4 стадии: профазу, метафазу, анафазу и телофазу.

Первое мейотическое деление называют редукционным. В результате из одной клетки с диплоидным набором хромосом образуются две с гаплоидным набором.

Профаза I – самая продолжительная. Ее условно делят на 5 стадий: лептотену, зиготену, пахитену, диплотену и диакинез.

Первая стадия (лептотена) характеризуется увеличением ядра. В ядре виден диплоидный набор хромосом. Хромосомы представляют собой длинные, тонкие нити. Каждая хромосома состоит из двух хроматид, имеющих хромомерное строение. Начинается спирализация хромосом.

Во время зиготены происходит конъюгация гомологичных хромосом. Они притягиваются и прикладываются друг к другу по всей длине. центромера одной из парных хромосом точно прилегает к центромере другой, каждая хроматида прилегает к гомологичной хроматиде другой.

Третья стадия (пахитена) – стадия толстых нитей. Конъюгирующие хромосомы тесно прилегают друг к другу. Такие сдвоенные хромосомы называют бивалентами. Каждый бивалент состоит из четверки (тетрады) хроматид. Число бивалентов равно гаплоидному набору хромосом. Происходит дальнейшая спирализация. Тесный контакт между хроматидами дает возможность обмениваться идентичными участками в гомологичных хромосомах. Это явление называется «кроссинговер» (англ. crossing over – перекрест).

Четвертая стадия (диплотена) характеризуется возникновением сил отталкивания. Хромосомы, составляющие биваленты, начинают отходить друг от друга. Расхождении начинается в области центромер. Хромосомы соединены между собой в нескольких точках – хиазмах (греч. chiasma – перекрест), то есть местами, где произойдет кроссинговер. В каждой хиазме осуществляется обмен участками хроматид. Хромосомы спирализуются и укорачиваются.

Пятая стадия (диакинез) характеризуется максимальными спирализацией, укорочением и утолщением хромосом. Отталкивание хромосом продолжается, но они остаются соединенными в биваленты своими концами. Ядрышко и ядерная оболочка растворяются. Центриоли расходятся к полюсам клетки.

Таким образом, в профазе первого мейотического деления происходят три основных процесса:

– конъюгация гомологичных хромосом;

– образование бивалентов хромосом;

– кроссинговер.

Метафаза I. Биваленты хромосом располагаются по экватору клетки, образуя метафазную пластинку. К ним прикрепляются нити веретена деления.

Анафаза I. К полюсам клетки расходятся хромосомы, а не хроматиды. В дочерние клетки попадают только по одной из пары гомологичных хромосом.

Телофаза I. На этой стадии число хромосом в каждой клетке становится гаплоидным. Хромосомы состоят из двух хроматид. Вследствие кроссинговера при образовании хиазм хроматиды генетически неоднородны. На короткое время образуется ядерная оболочка, хромосомы деспирализуются, ядро становится интерфазным. Затем у животной клетки начинается деление цитоплазмы, а у растительной клетки формирование клеточной стенки.

Интерфаза II. Эта стадия отмечается только у животных клеток. Во время интерфазы между первым и вторым делением в S-период не происходит редупликации молекул ДНК.

Второе мейотическое деление называют эквационным. Оно похоже на митоз. Из хромосом, имеющих две хроматиды, образуются хромосомы, состоящие из одной хроматиды.

Профаза II. Хромосомы утолщаются и укорачиваются. Ядрышко и ядерная оболочка разрушаются. Образуется веретено деления.

Метафаза II. Хромосомы выстраиваются вдоль экватора. Нити веретена отходят к полюсам клетки. Образуется метафазная пластинка.

Анафаза II. Центромеры делятся и тянут за собой к противоположным полюсам отделившиеся друг от друга хроматиды, называемые хромосомами.

Телофаза II. Хромосомы деспирализуются и становятся невидимыми. Нити веретена исчезают. Вокруг ядер формируется оболочка. Ядра содержат гаплоидный набор хромосом. Происходит деление цитоплазмы и образование клеточной стенки у растений. Из одной исходной клетки образуются 4 гаплоидные клетки.

Значение мейоза

1. Поддержание постоянства числа хромосом. Если бы не возникало уменьшения числа хромосом при мейозе, и половые клетки имели диплоидный набор хромосом, то из поколения в поколение возрастало бы их число.

2. При мейозе образуется большое количество новых комбинаций негомологичных хромосом.

3. В процессе кроссинговера имеют место рекомбинации генетического материала.

Практически все хромосомы, попадающие в половые клетки, содержат участки, происходящие первоначально как от отцовской, так и от материнской хромосомы. Этим достигается большая степень перекомбинации наследственного материала. В этом одна из причин изменчивости организмов, дающей материал для естественного отбора.

 

ОТЛИЧИЯ МИТОЗА ОТ МЕЙОЗА

 

При митозе в профазе нет конъюгации гомологичных хромосом и кроссинговера.

Удвоение хромосом соответствует каждому делению клетки.

В метафазе при митозе на экваторе выстраиваются хромосомы из двух хроматид.

В анафазе при митозе к полюсам расходятся хроматиды.

В телофазе дочерние клетки содержат то же число хромосом, что и материнские.

При мейозе в профазе I происходит конъюгация гомологичных хромосом, имеет место кроссинговер. Образуются биваленты хромосом.

В метафазе I при мейозе на экваторе располагаются биваленты хромосом.

При мейозе в анафазе I к полюсам расходятся хромосомы из двух хроматид.

В телофазе I мейоза число хромосом в дочерних клетках вдвое меньше, чем в материнских.

Между I и II делениями мейоза в интерфазе нет синтеза ДНК.

Мейоз осуществляется в диплоидных и полиплоидных клетках.

В результате мейоза из одной диплоидной клетки образуются 4 гаплоидные.

 

 

Лекция 8. Размножение организмов.

 

Размножение, или репродукция, – одно из основных свойств живого. Размножение – это способность производить себе подобных особей. В известном смысле существование организма является подготовкой к выполнению им главной биологической задачи – участию в размножении. Существование каждого вида и жизни на Земле в целом поддерживается размножением. Биологическая роль размножения состоит в том, что оно обеспечивает смену поколений. Различия, закономерно проявляющиеся в организмах особей разных поколений, делают возможным естественный отбор и, следовательно, эволюцию жизни. В процессе размножения наряду со сменой поколений и поддержанием достаточного уровня внутривидовой изменчивости решаются также задачи увеличения числа особей и сохранения складывающихся в эволюции типов структурно-функциональной организации путем воспроизведения себе подобного. Последнее связано с тем, что при размножении осуществляется передача в ряду поколений генетического материала в виде ДНК, то есть специфичной для данного вида биологической информации.

Известны две формы размножения: бесполое и половое. При бесполом размножении организм возникает из соматических клеток, а источником изменчивости могут быть случайные мутации. При половом размножении необходимо, как правило, наличие двух особей. Новый организм возникает из специализированных половых клеток или особей, выполняющих эти функции.

БЕСПОЛОЕ РАЗМНОЖЕНИЕ

 

В бесполом размножении принимает участие одна родительская особь. В результате бесполого размножения можно получить большое количество особей, подобных материнской. Бесполое размножение широко распространено среди растений, простейших и некоторых многоклеточных животных.

Основные формы бесполого размножения: деление на два, шизогония, почкование, фрагментация, спорообразование, вегетативное размножение у растений.

Деление на два сопровождается митозом, в результате образуются две идентичные особи. Распространено у простейших (амёба, эвглена).

При множественном делении (шизогонии) ядро исходной клетки несколько раз делится митозом, а затем имеет место деление цитоплазмы. Встречается у малярийного плазмодия.

При почковании новая особь образуется в виде выроста (почки) на родительской особи, а затем отделяется от нее, превращаясь в самостоятельный организм, идентичный родительскому. Почкование характерно для дрожжей и кишечнополостных.

Размножение фрагментами (фрагментация) происходит при разделении особи на две или большее число частей, каждая из которых растет и образует новую особь. С фрагментацией связана регенерация – способность восстанавливать целостный организм. Фрагментация описана для плоских червей, немертин и морских звёзд.

Спорообразование характерно для водорослей, грибов, папоротников и мхов. Спора – одна из стадий жизненного цикла, служащая для размножения. Она состоит из клетки с ядром и цитоплазмой, покрытой оболочкой. Споры гаплоидны, образуются в результате мейоза в больших количествах. Они способны разноситься на далекие расстояния, имеют приспособления для полета и для защиты от неблагоприятных условий. У одноклеточных и нитчатых водорослей клетки, образующие споры, делятся на две и образуют зооспоры – споры, имеющие жгутики. Они способны плавать в воде. У мхов и папоротников спорообразование чередуется с половым размножением.

При вегетативном размножении от растений отделяется дифференцированная часть, способная развиться в самостоятельное растение. Вегетативное размножение может быть естественным и искусственным.

Для естественного вегетативного размножения могут служить специальные образования, имеющие запас питательных веществ: клубни (картофель), луковицы (лук, тюльпан), клубнелуковицы (шафран), корневища (осот, ландыш), усы (земляника). Для искусственного вегетативного размножения используют части самого растения: черенки (часть стебля), листья (бегония), отводки (малина), корневые отпрыски. Производят деление кустов и прививки.

Вегетативное размножение применяют для получения большого числа однородных особей, для закрепления признаков хорошего сорта.

Бесполое размножение может происходить у млекопитающих и человека. Это полиэмбриония – бесполое размножение зародыша на ранних стадиях эмбриогенеза животных, размножающихся половым путем. Полиэмбриония характерна для броненосцев, у которых на стадии бластулы происходит разделение на 4-8 зародышей. В результате полиэмбрионии у человека рождаются монозиготные близнецы.

 

ПОЛОВОЕ РАЗМНОЖЕНИЕ

 

Половое размножение существует на Земле уже более 3 миллиардов лет. В его основе лежит половой процесс – объединение в наследственном материале генетической информации из разных источников (родителей) для развития потомка. Поэтому организмам с половым размножением свойственна двойственная наследственность. Этим достигается неповторимость каждой особи в любой популяции, размножающейся половым путем.

Преимущество полового размножения состоит в перекомбинации лучших наследственных признаков обоих родителей, что является источником изменчивости. Потомство более жизнеспособно и приспособлено к условиям существования. Быстрее происходит эволюция вида и его расселение в разные среды.

При половом процессе происходит слияние специализированных гаплоидных половых клеток (гамет), образовавшихся в результате мейоза.

Строение половых клеток

До оплодотворения происходит образование гамет. Гаметы у млекопитающих формируются в половых железах (гонадах) в результате гаметогенеза. Гаметы – высокодифференцированные клетки, содержащие наследственную информацию, необходимую для развития организма. Женские гаметы называются яйцеклетки, мужские – сперматозоиды.

Яйцеклетки были открыты в 1827 г. российским эмбриологом К.М. Бэром. Это самые крупные клетки организма (яйцеклетка страуса имеет диаметр около 150 мм, у человека – 89-91 мкм). Они неподвижны, имеют ядро, цитоплазму, питательный материал (желток). По содержанию желтка клетки могут быть алецитальными, изолецитальными, телолецитальными и центролецитальными.

Алецитальные яйцеклетки содержат очень мало желтка. Они характерны для плацентарных млекопитающих, в том числе человека. Изолецитальные яйцеклетки мелкие, с небольшим количеством равномерно распределенного желтка. Характерны для хордовых, двустворчатых и брюхоногих моллюсков. Телолецитальные яйцеклетки могут быть с умеренным или большим содержанием желтка. Для яйцеклеток рыб и земноводных характерно умеренное содержание желтка. Он находится на одном из полюсов, называемом вегетативным. Полюс, не содержащий желтка, назван анимальным. пресмыкающиеся и птицы имеют телолецитальные яйцеклетки с очень большим содержанием желтка. На анимальном полюсе находится зародышевый диск с ядром и цитоплазмой без желтка. На вегетативном полюсе желтка много. В центролецитальных яйцеклетках желток окружает ядро. По периферии клетки расположена свободная от желтка цитоплазма. Такие яйцеклетки характерны для членистоногих.

Мужские гаметы (сперматозоиды) были открыты в 1677 г. Левенгуком, термин предложен К. Бэром в 1827 г. Это очень мелкие клетки (средний объем у человека 16-19 мкм3), способны к движению. Сперматозоиды млекопитающих имеют головку, шейку и хвост. Головка содержит ядро и немного цитоплазмы. На переднем конце головки есть акросома (видоизмененный комплекс Гольджи), содержащая ферменты для растворения оболочки яйцеклетки при оплодотворении. В шейке имеются центриоли и митохондрии. От шейки отрастает хвост, представляющий собой жгутик, необходимый для передвижения. Фактически сперматозоид представляет «ампулу с ДНК», которая в высшей степени специализирована для функции внесения своей ДНК в яйцеклетку.

 

ГАМЕТОГЕНЕЗ

 

Гаметогенез – это процесс образования половых клеток. Сперматозоиды образуются в результате сперматогенеза, яйцеклетки – в результате овогенеза. Клетки зачаткового эпителия половых желез делятся последовательно митозом и мейозом. В результате этих делений образуются яйцеклетки и сперматозоиды. Процесс образования половых клеток регулируется гормонами.

 

Сперматогенез

Сперматогенез осуществляется в стенках извитых канальцев яичек. Этот процесс имеет 4 периода.

Первый период сперматогенеза – размножение. Наружный слой клеток канальцев яичка содержит диплоидный набор хромосом. Клетки делятся митозом. Их число увеличивается. Образуются незрелые половые клетки – сперматогонии. Они имеют округлую форму и крупное ядро. Сперматогонии перемещаются в зону роста, расположенную ближе к просвету канальца. Клетки увеличиваются в размерах и называются сперматоцитами 1-го порядка. Это второй период – период роста. Третий период – созревание. С наступлением половой зрелости сперматоциты постепенно претерпевают мейотические деления. В этом периоде происходят два мейоза. Каждый сперматоцит 1-го порядка в результате 1-го мейотического деления образует два сперматоцита 2-го порядка с гаплоидным набором хромосом. После второго мейотического деления возникают еще по две сперматиды. Это овальные клетки небольших размеров. В четвертом периоде – формирования – сперматиды перемещаются ближе к просвету канальца. Из сперматид формируются сперматозоиды. Хвосты сперматозоидов направлены в просвет канальца. Таким образом, из одного сперматогония формируются 4 зрелых сперматозоида, которые выходят в просвет семенного канальца.

 

Овогенез

Этот процесс осуществляется в яичниках. В овогенезе различают 3 периода.

Первый период (размножение) заканчивается до рождения девочки. Клетки зачаткового эпителия яичника делятся митозом и образуются незрелые половые клетки – овогонии. Во втором периоде (роста) образуются овоциты 1-го порядка, которые до полового созревания остаются на стадии профазы 1-го мейотического деления.

Овоциты 1-го порядка на этой стадии могут оставаться очень долго (десятки лет). С наступлением половой зрелости каждый месяц один из них увеличивается в размерах и окружается фолликулярными клетками, обеспечивающими питание. Наступает третий период – созревание. Под влиянием гормонов овоцит 1-го порядка заканчивает первое мейотическое деление и образуется один овоцит 2-го порядка и редукционное тельце, которое позднее делится мейозом на две гаплоидные клетки. Второе деление мейоза продолжается до стадии метафазы.

На этой стадии овоцит 2-го порядка выходит из яичника в брюшную полость, а оттуда попадает в яйцевод. Дальнейшее созревание не произойдет, если не случится оплодотворение. В яйцеводах овоцит 2-го порядка заканчивает второе деление мейоза, образуя овотиду – крупную клетку и второе редукционное тельце. В дальнейшем овотида трансформируется в яйцеклетку, а редукционные тельца разрушаются. Таким образом, из одной овогонии образуется одна овотида и три редукционных тельца. Если оплодотворения не произойдет, овоцит 2-го порядка погибнет и будет выведен из организма.

 

Отличия сперматогенеза от овогенеза

· после полового созревания при сперматогенезе в мейоз непрерывно вступают новые клетки;

· из каждой приступившей к мейозу клетки образуется не одна, а четыре гаметы;

· зрелые сперматозоиды формируются после завершения мейоза в ходе сложного процесса клеточной дифференцировки.

 

Гаметогенез отличается высокой производительностью. За время половой жизни мужчина продуцирует не менее 500 млрд. сперматозоидов. На 5-м месяце эмбриогенеза в зачатке яичника насчитывается 6-7 млн. овогоний. К началу репродуктивного периода в яичниках обнаруживается примерно 100 тысяч овоцитов. За весь репродуктивный период в организме женщины созревают примерно 400-500 яйцеклеток.

 

ОПЛОДОТВОРЕНИЕ

 

Оплодотворение – соединение двух гамет, в результате чего образуется оплодотворенное яйцо – зигота (начальная стадия развития нового организма). Зигота содержит материнскую и отцовскую гаметы. В ней резко активизируются обменные процессы. Зигота способна к дальнейшему развитию.

Сущность оплодотворения состоит во внесении сперматозоидом отцовских хромосом. Сперматозоид оказывает стимулирующее влияние, вызывающее начало развития яйцеклетки.

Оплодотворению предшествует осеменение – процесс, обеспечивающий встречу мужской и женской гамет. Осеменение может быть наружным и внутренним. Наружное характерно для водных животных (рыбы, амфибии). Гаметы выделяются в воду, где и происходит их слияние. Внутреннее осеменение типично для животных, обитающих на суше. Сперматозоиды во время полового акта вводятся в половые пути самки. Встреча гамет происходит в верхних отделах яйцеводов.

Продолжительность жизни и способность гамет к оплодотворению ограничены. Например, яйцеклетка человека способна к оплодотворению в течение 12-24 часов после овуляции. Сперматозоиды сохраняют способность к оплодотворению в половых путях в течение нескольких часов. Продолжительность жизни сперматозоидов и сохранение ими оплодотворяющей способности зависит от внешних факторов в среде, в которой находятся гаметы (освещенности, температуры, концентрации углекислого газа, рН). Оплодотворение может произойти лишь при определенной концентрации сперматозоидов в семенной жидкости. Обычно в 1 мл спермы мужчины содержится около 40 млн. сперматозоидов. Из них в полость матки попадает менее 10 млн., а в маточные трубы – несколько десятков.

Для выведения ценных пород животных применяется искусственное осеменение. Для этого используют консервированную сперму элитных производителей, которая может храниться в жидком азоте до 6 лет. С 1978 г. искусственное осеменение и оплодотворение в пробирке применяется к людям.

После осеменения происходит оплодотворение.

Яйцеклетки выделяют в окружающую среду вещества, активирующие сперматозоиды, которые движутся по направлению к ней. Вещества, выделяемые яйцеклеткой, вызывают склеивание сперматозоидов, что способствует удержанию их вблизи яйцеклетки. К яйцеклетке подходит множество сперматозоидов, но проникает в нее лишь один. Проникновению сперматозоида способствуют ферменты, выделяемые акросомой (гиалуронидаза и др.). Оболочка яйцеклетки растворяется и через отверстие в ней сперматозоид проникает в яйцеклетку. На поверхности яйца образуется оболочка оплодотворения, которая защищает яйцо от проникновения других сперматозоидов. Между этой оболочкой и поверхностью яйца имеется свободное пространство, заполненное жидкостью.

Проникновение сперматозоида способствует завершению второго деления мейоза, и овоцит 2-го порядка становится зрелым яйцом. В яйце усиливается метаболическая активность, увеличивается потребление кислорода и происходит интенсивный синтез белка.

Ядра сперматозоида и яйцеклетки сближаются, их мембраны растворяются. Ядра сливаются и восстанавливается диплоидный набор хромосом. Это основной момент в процессе оплодотворения. При оплодотворении сперматозоид вносит свой хромосомный материал в яйцеклетку и оказывает стимулирующее влияние, вызывая развитие организма.

Таким образом, оплодотворение состоит из трех важнейших этапов:

- проникновение сперматозоида в яйцеклетку:

- активация в яйце метаболических процессов;

- слияние ядер яйцеклетки и сперматозоида и восстановление диплоидного набора хромосом.

 

ПАРТЕНОГЕНЕЗ

 

Партеногенез (от греч. parthenos – девственница, genos – рождение) представляет собой особую форму полового размножения, развитие из неоплодотворенных яиц, позволяющее особи производить потомков без настоящего оплодотворения. Партеногенез был открыт швейцарским естествоиспытателем Ш. Бонне в 1762 г. Источником наследственного материала для развития потомка в этом случае обычно служит ДНК яйцеклетки – гиногенез. При гиногенезе возникает организм с гаплоидным набором хромосом, имеющий лишь материнские признаки. Гиногенез наблюдается у некоторых нематод и рыб. Реже наблюдается андрогенез – развитие потомка из клетки с цитоплазмой яйцеклетки и ядром сперматозоида. Ядро женской гаметы в случае андрогенеза погибает. Андрогенез отмечен у тутового шелкопряда.

Известен естественный и искусственный партеногенез.

Естественный партеногенез существует у ряда растений, червей, насекомых, ракообразных. У пчел и муравьёв встречается факультативный партеногенез. Из неоплодотворённых яиц развиваются самцы, а из оплодотворенных – самки. Таким образом, регулируется соотношение полов.

Партеногенез отмечается у некоторых видов ящериц и птиц. Имеются указания на возможность девственного развития у человека – в яичниках девушек в отсутствие предшествующего осеменения находили зародыши на ранних этапах дробления. Однако наблюдения завершенного эмбриогенеза с партеногенетическим развитием в отношении человека отсутствуют. Для формирования организма человека необходимы два генома – женский и мужской.

Искусственный партеногенез обнаружен в 1886 г. русским зоологом А.А. Тихомировым. Он выяснил, что для развития яйца необходима активация. В естественных условиях эту функцию выполняют сперматозоиды после проникновения в яйцеклетку. В эксперименте активация может быть вызвана различными воздействиями: химическим, механическим, электрическим, термическим и др. Эти факторы изменяют метаболизм яйцеклетки и активируют её.

 

Половой диморфизм

 

Под половым диморфизмом понимают различия признаков мужских и женских особей раздельнополых видов, возникающие в результате полового отбора. Половой диморфизм человека проявляется в его анатомо-физиологических характеристиках, психологических и поведенческих признаках, то есть он затрагивает важнейшие стороны его биологического и социального статуса.

Генетический аспект полового диморфизма проявляется в различном кариотипе мужчин и женщин – женщины имеют половые хромосомы ХХ, мужчины ХY. Эндокринный аспект полового диморфизма заключаются в различиях по главному половому гормону (тестостерон у мужчин и эстрадиол у женщин).

Морфологические проявления полового диморфизма у человека очень разнообразны. Мужчины и женщины различаются по общим размерам тела, например, различия по длине тела составляют в среднем 9-10 см. В составе тела у мужчин выше доля костно-мышечного компонента, у женщин – жирового. Топография подкожного жироотложения – у мужчин жир в основном локализуется на туловище, у женщин – в нижней части туловища и на бедрах. Пропорции тела: у мужчин широкие плечи и узкий таз, более длинные конечности, у женщин – наоборот, широкий таз и более узкий таз, туловище и корпус длиннее. Телосложение – у взрослых мужчин чаще встречается мускульный тип конституции, а у женщин – пикнический.

У мужчин обычно больше размеры всех костей, рельеф на них выражен сильнее, кости у мужчин тяжелее и массивнее. У мужчин длиннее позвоночник, а у женщин лучше выражен поясничный лордоз; грудная клетка – у женщин короче и уже; живот – у женщин длиннее; кисть – у женщин более узкая. Мужской череп более крупный, с выраженными надбровными дугами и более крупной нижней челюстью. Для женского черепа характерна более вертикальная форма лба. Женский таз более низкий и широкий, вход в малый таз у них более округлый, а у мужчин – продольно-овальный. Мужской скелет содержит больше цинка, а женский – марганца, свинца и стронция.

У мужчин более крупные зубы, сердце, желудок, надпочечники, головной мозг. У мужчин больше лимфатических узлов и нервных волокон, толще кожа. Женщины опережают мужчин по размерам молочных и большинства эндокринных желез и относительной массе головного мозга. Несмотря на более выраженный у мужчин третичный волосяной покров, количество волосяных закладок больше у женщин. Различается микроэлементный состав волос у обоих полов. Мужчины гораздо более склонны к облысению, чем женщины.

У женщин по сравнению с мужчинами глазная щель шире, губы тоньше, ширина рта меньше, ушная раковина меньше, но с более развитым рельефом, мочка уха развита лучше, размеры носа меньше, вогнутая спинка носа встречается чаще. У мужчин лицо выше и относительно уже.

Функциональные различия мужского и женского организма не менее многообразны. Особи женского пола у млекопитающих и человека более устойчивы ко многим заболеваниям и экстремальным воздействиям – действию ядовитых веществ, недостатку кислорода, продолжительной остановке сердца. Интересно, что предварительное удаление яичников способствовало снижению выживаемости самок в терминальном состоянии. Наоборот, у кастрированных самцов степень жизнеспособности в условиях опыта повышалась. В большинстве стран мира средняя продолжительность жизни у женщин больше, чем у мужчин.

По большинству показателей развития женщины опережают мужчин. У них раньше прорезываются молочные и постоянные зубы, наступает окостенение скелета и половое созревание.

В то же время, по ряду функций женский организм уступает мужскому. У мужчин выше показатели основного обмена, объемные параметры кровообращения и дыхания, уровень гемоглобина крови, скорость кровотока, артериальное давление, скорость мышечного сокращения, меньше время двигательной реакции на раздражение. По-разному мужской и женский организм реагируют на понижение температуры: у мужчин преимущественно повышается образование энергии, а у женщин – снижается теплоотдача, что более экономично для организма.

У мужчин чаще отмечается нормальная острота зрения. У мальчиков запаздывает становление цветоощущения, особенно для синего цвета. Почти исключительно для мужчин характерно аномальное восприятие красного и зеленого цвета (дальтонизм). Женщины чувствительнее мужчин к самым высоким частотам звукового диапазона. У них отмечается большая устойчивость вестибулярного анализатора. Женщины обладают более высокой тактильной чувствительностью. Отмечается большая чувствительность женщин к избирательным вкусам – горькому и кислому. Женщины чувствительнее мужчин к запахам мускусной, цветочной и потовой групп, причем половые различия увеличиваются с возрастом, так как острота обоняния у мужчин по мере старения снижается быстрее, чем у женщин. Мужчины и женщины различаются по эмоциональному отношению к возникшим обонятельным ощущениям. Например, женщинам больше нравятся запахи цветочной группы, а мужчинам – камфарной. Женщинам лучше удается идентифицировать большинство запахов, они более точно дают их словесное описание.