Бактерии делят на 2 домена: «Bacteria» и «Archaea».

В домене «Bacteria» можно выделить следующие бактерии:

1) бактерии с тонкой клеточной стенкой, грамотрицательные;

2) бактерии с толстой клеточной стенкой, грамположительные;

3) бактерии без клеточной стенки (класс Mollicutes — микоплазмы)

Архебактерии не содержат пептидогликан в клеточной стенке. Они имеют особые рибосомы и рибосомные РНК (рРНК).

Среди тонкостенных грамотрицательных эубактерий различают:

• сферические формы, или кокки (гонококки, менингококки, вейлонеллы);

• извитые формы — спирохеты и спириллы;

• палочковидные формы, включая риккетсии.

К толстостенным грамположительным эубактериям относят:

• сферические формы, или кокки (стафилококки, стрептококки, пневмококки);

• палочковидные формы, а также актиномицеты (ветвящиеся, нитевидные бактерии), коринебактерии (булавовидные бак­терии), микобактерии и бифидобактерии.

Тонкостенные грамотрицательные бактерии:Менингококки, гонококки, Вейлонеллы, Палочки, Вибрионы, Кампилобактерии, Хеликобактерии, Спириллы, Спирохеты, Риккетсии, Хламидии.

Толстостенные грамположительные бактерии:Пневмококки, Стрептококки, Стафилококки, Палочки, Бациллы, Клостридин, Коринебактерии, Микобактерии, Бифидобактерии, Актиномицеты.

№ 3 Тинкториальные свойства и методы окраски микробов (простые и сложные)

Различают простые и сложные методы окраски. Простые за­ключаются в окраске препарата одним красителем; сложные методы (по Граму, Цилю — Нильсену и др.) включают последо­вательное использование нескольких красителей и имеют диффе­ренциально-диагностическое значение. Отношение микроорганиз­мов к красителям расценивают как тинкториальные свойства. Существуют специальные методы окраски, которые используют для выявления жгутиков, клеточной стенки, нуклеоида и разных цитоплазматических включений.

Простой метод. Фиксированный мазок окрасить каким-либо одним красителем, например фуксином водным (1—2 мин) или метиленовым синим (3—5 мин), промыть водой, высушить и микроскопировать.

Сложные методы. Последовательно нанести на препа­рат определенные красители, различающиеся по химическому составу и цвету, протравы, спирты, кислоту и др. Это позволяет выявить определенные структуры клеток и дифференцировать одни виды микроорганизмов от других.

Существуютнесколько основных окрасок: по Грамму, по Цилю-Нельсону, по Ауески, Нейссера, Бури-Гинса,

 

№ 4 Методы микроскопии.

Темнопольная микроскопия.Микроскопия в темном поле зре­ния основана на явлении дифракции света при сильном боковом освещении взвешенных в жидкости мельчайших частиц (эффект Тиндаля). Эффект достигается с помощью параболоид- или кардиоид-конденсора, которые заменяют обычный конденсор в био­логическом микроскопе .

Фазово-контрастная микроскопия.Фазово-контрастное приспособление дает возможность увидеть в микроскоп прозрачные объекты. Они приобретают высокую контрастность изображения, которая может быть позитивной или негативной. Позитивным фазовым контрастом называют темное изображение объекта в светлом поле зрения, негативным — светлое изображение объек­та на темном фоне.

Для фазово-контрастной микроскопии используют обычный микроскоп и дополнительное фазово-контрастное устройство, а также специальные осветители.

Люминесцентная (или флюоресцентная) микроскопия.Осно­вана на явлении фотолюминесценции.

Люминесценция — свечение веществ, возникающее после воз­действия на них каких-либо источников энергии: световых, элек­тронных лучей, ионизирующего излучения. Фотолюминесцен­ция — люминесценция объекта под влиянием света. Если осве­щать люминесцирующий объект синим светом, то он испускает лучи красного, оранжевого, желтого или зеленого цвета. В ре­зультате возникает цветное изображение объекта.

Электронная микроскопия.Позволяет наблюдать объекты, размеры которых лежат за пределами разрешающей способно­сти светового микроскопа (0,2 мкм). Электронный микроскоп применяется для изучения вирусов, тонкого строения различных микроорганизмов, макромолекулярных структур и других субмик­роскопических объектов.

№ 5 Особенности строения грациликутных (грамотрицательных) и фирмикутных (грамположительных).

Бактериальная клетка состоит из клеточной стенки, цитоплазматической мембраны, цитоплазмы с включениями и яд­ра, называемого нуклеоидом. Имеются дополни­тельные структуры: капсула, микрокапсула, слизь, жгутики, пили. Некоторые бактерии в неблагоприятных условиях спо­собны образовывать споры.

Клеточная стенка. В клеточной стенке грамположительных бактерий содержится небольшое количество полисахаридов, липидов, белков. Основным компонентом толстой клеточной стенки этих бактерий является многослойный пептидогликан (муреин, мукопептид), составляющий 40-90 % массы клеточ­ной стенки. С пептидогликаном клеточной стенки грамположительных бактерий ковалентно связаны тейхоевые кислоты (от греч. teichos — стенка).

В состав клеточной стенки грамотрицательных бакте­рий входит наружная мембрана, связанная посредством липопротеина с подлежащим слоем пептидогликана. На ультратонких срезах бактерий наружная мембрана имеет вид волнообразной трехслойной структуры, сходной с внутрен­ней мембраной, которую называют цитоплазматической. Основным компонентом этих мембран является бимолекулярный (двойной) слой липидов. Внутренний слой наружной мембраны представлен фосфолипидами, а в наружном слое расположен липополисахарид.

Функции клеточной стенки:
1. Обусловливает форму клетки.
2. Защищает клетку от механических повреждений извне и выдерживает значительное внутреннее давление.
3. Обладает свойством полупроницаемости, поэтому через нее избирательно проникают из среды питательные вещества.
4. Несет на своей поверхности рецепторы для бактериофагов и различных химических веществ.

Метод выявления клеточной стенки - электронная микроскопия, плазмолиз.

L-формы бактерий, их медицинское значение
L-формы - это бактерии, полностью или частично лишенные клеточной стенки (протопласт +/- остаток клеточной стенки), поэтому имеют своеобразную морфологию в виде крупных и мелких сферических клеток. Способны к размножению.

Цитоплазматическая мембрана располагается под клеточной стенкой (между ними - периплазматическое пространство). По строению является сложным липидобелковым комплексом, таким же, как у клеток эукариот (универсальная мембрана).

Функции цитоплазматической мембраны:
1. Является основным осмотическим и онкотическим барьером.
2. Участвует в энергетическом метаболизме и в активном транспорте питательных веществ в клетку, так как является местом локализации пермеаз и ферментов окислительного фосфорилирования.
3. Участвует в процессах дыхания и деления.
4. Участвует в синтезе компонентов клеточной клетки (пептидогликана).
5. Участвует в выделении из клетки токсинов и ферментов.

Цитоплазматическая мембрана выявляется только при электронной микроскопии.

№ 6 Строение липополисахаридов.

Липополисахарид (ЛПС)наружной мембраны со­стоит из трех фрагментов:

• липида А — консервативной структуры, практически одинаковой у грамотрицательных бактерий;

• ядра, или стержневой, коровой части, относительно консервативной олигосахаридной структуры;

• высоковариабельной О-специфической цепи полисахарида, образованной повторя­ющимися идентичными олигосахаридными последовательностями.

ЛПС «заякорен» в наружной мембране липидом А, обуславливающим токсичность Л ПС и отождествляемым поэтому с эндотоксином. Разрушение бактерий антибиотиками при­водит к освобождению большого количества эндотоксина, что может вызвать у больного эндотоксический шок. От липида А отходит ядро, или стержневая часть ЛПС. Наиболее постоянной частью ядра ЛПС является кето-дезоксиоктоновая кислота (З-деокси-О-манно-2-октулосоновая кислота). О-специфическая цепь, отходящая от стержневой части молекулы ЛПС, обусловливает серогруппу, серовар (разновидность бактерий, выявляе­мая с помощью иммунной сыворотки) опре­деленного штамма бактерий. Таким образом, с понятием ЛПС связаны представления об О-антигене, по которому можно дифферен­цировать бактерии. Генетические изменения могут привести к дефектам, «укорочению» ЛПС бактерий и к появлению в результате этого «шероховатых» колоний R-форм.

№ 7 Механизм и этапы окраски по Граму.

 

1. На фиксированный мазок нанести карболово-спиртовой раствор генцианового фиолетового через полоску фильтровальной бумаги. Через 1-2 мин снять ее, а краситель слить.

2. Нанести раствор люголя на 1-2 мин (йод)

3. Обесцветить этиловым спиртом в течении 30-60 с до прекращения отхождения фиолетовых струек красителя.

4. Промыть водой

5. Докрасить водным р-ом фуксина в течении 1-2 мин, промыть водой, высушить и микроскопировать.

* Грамположительные бактерии окрашиваются в темно-фиолетовый цвет, грамотрицательные - в красный.

№ 8 Представление о поринах.

Порины – это белки, образующие поры. Они являются основными белками наружной мембраны.

Молекула порина состоит из трех идентичных мономеров, т.е. является тримером. Каждый мономер представляет собой цилиндр, образованный 16-18 антипараллельными бета-тяжами, который окружает водонаполненный канал. Порины иммуногенны, они являются протективными антигенами. В этом качестве порины обладают рядом преимуществ перед традиционно применяемыми липополисахаридами: они являются видоспецифическими антигенами, иммунный ответ к ним носит Т-зависимый характер, они не токсичны. Эти обстоятельства в последние годы привели к созданию на основе поринов эффективных препаратов для защиты от ряда инфекций. Порины являются перспективными диагностическими антигенами.

 

№ 9 Кислотоустойчивые бактерии. Механизм и этапы окраски по Цилю-Нельсону.

Кислотоустойчивые бактерии - виды бактерий, клетки которых после окрашивания карболовым фуксином в красный цвет не обесцвечиваются раствором серной кислоты. Это связано с особенностями химического состава бактериальных клеток. У группы кислотоустойчивых бактерий существуют особенности химического состава клеточной стенки. Кислотоустойчивость обусловлена наличием в клеточной стенке повышенного количества липидов, оксикислот (миколовой и миколеновой), восков.

К кислотоустойчивым бактериям относятся:
- Mycobacterium tuberculosis - возбудитель туберкулеза
- Mycobacterium africanum - возбудитель эндемического туберкулеза в Африке
- Mycobacterium scrofulaceum - возбудитель лимфаденитов у детей
- Mycobacterium leprae - возбудитель лепры
- Mycobacterium smegmatis - нормальный обитатель мочеполовой системы мужчин

Для окраски кислотоустойчивых бактерий используют метод Циля-Нильсена.

Механизм окраски. При обработке препарата фуксином все клетки окрашиваются в красный цвет. При последующем обесцвечивании серной кислотой кислотоустойчивые бактерии, из-за особенностей своего химического состава, удерживают краситель. Кислотоподатливые обесцвечиваются, поэтому при дальнейшем окрашивании метиленовой синью воспринимают краситель и приобретают синий цвет.

Этапы окраски:

1. На фиксированный мазок нанести карболовый р-р фуксина через полоску фильтровальной бумаги и подогреть до появления паров в течении 3-5 мин

2. Снять бумагу, провыть мазок водой

3. Нанести 5% р-р серной кислоты или 3% р-р смеси спирта с хлороводородной кислотой на 1-2 мин для обесцвечивания.

4. Промыть водой

5. Докрасить мазок водным р-ом метиленового синего в течении 3-5 мин

6. Промыть водой, высушить и микроскопировать

* Некислоустойчивые – обесцвечиваются и окр. метиленовым синим в голубой цвет, а кислоустойчивые остаются окрашенными фуксином в красный.

 

№ 10 Особенности строения рибосом бактерий.

 

Цитоплазма занимает основной объем бак­териальной клетки и состоит из растворимых белков, рибонуклеиновых кислот, включе­ний и многочисленных мелких гранул — ри­босом, ответственных за синтез (трансля­цию) белков.

Рибосомы бактерий имеют размер около 20 нм и коэффициент седиментации 70S, в отличие от 80S-рибосом, характерных для эукариотических клеток. Поэтому некото­рые антибиотики, связываясь с рибосомами бактерий, подавляют синтез бактериального белка, не влияя на синтез белка эукариотических клеток. Рибосомы бактерий могут диссоциировать на две субъединицы — 50S и 30S. Рибосомные РНК (рРНК) — консер­вативные элементы бактерий («молекуляр­ные часы» эволюции). 16S рРНК входит в состав малой субъединицы рибосом, a 23S рРНК— в состав большой субъединицы ри­босом. Изучение 16S рРНК является основой геносистематики, позволяя оценить степень родства организмов.

 

№ 11 Капсулы бактерий, функция, условия образования, методы выявления.

Капсула — слизистая структура толщиной более 0,2 мкм, прочно связанная с клеточ­ной стенкой бактерий и имеющая четко очерченные внешние границы. Капсула различима в мазках-отпечатках из патологи­ческого материала. В чистых культурах бакте­рий капсула образуется реже.

Капсула состоит из полисахаридов (экзополисахаридов), иногда — из полипептидов; например, у сибиреязвенной ба­циллы она состоит из полимеров D-глутаминовой кислоты. Капсула гидрофильна, препятствует фагоцитозу бактерий. Капсула антигенна: антитела против капсулы вызывают ее уве­личение (реакция набухания капсулы).

Многие бактерии образуют микрокапсулу — слизистое образование толщиной менее 0,2 мкм, выявляемое лишь при электронной микроскопии.

Функции.
1. В организме предохраняет бактерии от фагоцитоза и действия антител.
2. Во внешней среде предохраняет бактерии от высыхания.

Метод выявления.

Капсулу можно обнаружить окраской по Бурри-Гинсу. При микроскопии бактерии окрашиваются в красный цвет, а неокрашенные капсулы контрастно выделяются на черно-розовом фоне препарата.

№ 12 Включения бактерий, условия образования и методы выявления.

 

В цитоплазме имеются различные включе­ния в виде гранул гликогена, полисахаридов, бета-оксимасляной кислоты и полифосфатов (волютин). Они накапливаются при избытке питательных веществ в окружающей среде и выполняют роль запасных веществ для пита­ния и энергетических потребностей.

Волютин обладает сродством к основным красителям и легко выявляется с помощью специальных методов окраски (например, по Нейссеру) в виде метахроматических гранул. Толуидиновым синим или метиленовым голу­бым волютин окрашивается в красно-фиоле­товый цвет, а цитоплазма бактерии — в синий. Характерное расположение гранул волютина выявляется у дифтерийной палочки в виде ин­тенсивно прокрашивающихся полюсов клетки. Метахроматическое окрашивание волютина связано с высоким содержанием полимеризо-ванного неорганического полифосфата. При электронной микроскопии они имеют вид элек­тронно-плотных гранул размером 0,1—1,0 мкм.

Примеры микроорганизмов, имеющих зерна волютина:
- Spirillum volutans - сапрофит
- Corynebacterium xerosis - нормальный обитатель глаз
- Corynebacterium diphtheriae - возбудитель дифтерии (расположены полюсно)
- Corynebacterium ulcerans - возбудитель дифтериеподобных поражений кожи

 

№ 13 Жгутики бактерий, функция, расположение. Обнаружение и их определение подвижности бактерий.

Все бактерии подразделяются на подвижные и неподвижные. Органами движения у бактерий являются жгутики. Они состоят из белка флагеллина, который по своей структуре относится к сократительным белками типа миозина.

Основанием жгутика является базальное тельце, состоящее из системы дисков (блефаропласта: 1 диск - наружная сторона клеточной стенки, 2 диск - внутренняя сторона клеточной стенки, 3 диск - цитоплазматическая мембрана), "вмонтированных" в цитоплазматическую мембрану и клеточную стенку. Длина жгутика больше длины тела самого микроба.
По числу жгутиков и их расположению подвижные микроорганизмы подразделяются на:

1. Монотрихи, имеющие на конце тела один жгутик (самые подвижные). Например, Vibrio cholerae.

2. Лофотрихи, имеющие пучок жгутиков на одном из полюсов клетки. Например, Burkholderia (Pseudomonas) pseudomalei - возбудитель мелиоидоза.
3. Амфитрихи, имеющие жгутик на обоих полюсах клетки. Например, Spirillum volutans.
4. Перитрихи, имеющие жгутики по всему периметру клетки. Например, Escherichia coli, Salmonella typhi.

Выявление жгутиков.Жгутики очень тонкие, поэтому их можно обнаружить только при специальной обработке. В частности, вначале при помощи протравы достигается разбухание и увеличение их размера, а затем производится окраска препарата, благодаря чему они становятся видимыми при световой микроскопии. Выявлять жгутики можно окраской по Морозову, Леффлеру, а также электронной микроскопией. Обнаружить жгутики можно и по активной подвижности бактерий.

Движение микробов наблюдают в препаратах "раздавленной" и "висячей" капли из живых культур. Микроскопируют эти препараты сухим или иммерсионным объективом в темном поле или в фазовом контрасте. Кроме того, подвижность можно определить по характеру роста бактерий в полужидком агаре.

 

№ 14 Пили у бактерий.

Пили (pili), синонимы: ворсинки, фимбрии, - тонкие полые нити белковой природы, покрывающие поверхность бактериальных клеток. В отличие от жгутиков не выполняют двигательную функцию.

Пили отходят от поверхности клетки и состоят из белка пилина.