от влияния магнитных бурь.

После изучения этого материала у меня появилось желание самому пронаблюдать, как влияют магнитные явления на самочувствие людей. Я проследил эту закономерность на примере разновозрастных групп людей.

1 группа: ученики с 8 до 14 лет, так как у нас основная школа ,

2 группа : учителя с 30 до 60 лет.

Перед собой поставил цель: установить степень воздействия магнитных бурь на нашу работоспособность и самочувствие и рассчитать процент зависимых от числа опрошенных. Отслеживание мы проводили в течение 1 месяца.

Всего было опрошено 12 человек. Из первой группы- 8 учащихся. Из второй группы 4 учителя. На вопрос: Влияет ли на ваше самочувствие магнитные бури, были получены следующие ответы:

Группа Да (%) Нет (%)
1 группа
2 группа

Результаты исследований, произведённых в школе вывел в виде диаграммы.

 

Самочувствие иногда ухудшалось в день предшествующий сложному или в последующий. Основные жалобы, которые высказывали на здоровье, были: головная боль, слабость, перепады артериального давления. Большая зависимость людей 2 группы объясняется возрастными изменениями, ослаблением защитной функции организма. Кроме того, были выявлены люди, обладающие магнитной защитой.

Влияние магнитной бури на учителей оказалось более заметным. Мы думаем это связано с возрастом, чем он старше тем он более метеозависим. В среднем магнитная буря повлияла на 20% учителей.

Мы сделали вывод, учащиеся и учителя, не страдающие заболеваниями, не заметили происходящее. А вот те, кто получил травму ранее, имеет хронические заболевания, инвалидность, а так же преклонный возраст чувствовали себя плохо.

Магнитная буря способна ударить по самым слабым местам. Хронические заболевания способны обостриться, сердце сбивается с ритма, плохое настроение сменяется затяжной депрессией. Реакция каждого человека индивидуальна. У одного возникает слабость, другой страдает от головной боли, снижения физической активности. Человек может стать раздражительным и тревожным без видимой на то причины.

Заключение.

По данным инженеров из службы GPS за последний год «бег» магнитных полюсов нашей планеты увеличился. Север смещается на юг с пугающей скоростью 8 метров в час…Восемь метров в час – 180 метров в сутки, это 65 км в год. Исследователи заверяют, что сейчас они наблюдают самое быстрое в наблюдаемой истории снижение напряженности магнитного поля.

Итак, что же это значит для нас? На самом деле пока что ученые спорят о хоть сколько-нибудь единой теории. А они разнятся от «страшилок» - вроде того, что Земля остановится и все живое на ней погибнет, до полностью пофигистских «никто вообще ничего не заметит».

В данной работе мы поставили цель - исследовать, как повлияет переполяризация Земли на техногенную цивилизацию, а также на животный мир на нашей планете. В результате анализа последних исследований ученых мы выявили, что животные ориентируются по линиям индукции магнитного поля Земли и весь животный мир смог бы выжить при переполяризации.

Не стоит проводить масштабных исследований, чтоб доказать, что современная цивилизация в таких условиях выжить не сможет, поскольку человечество слишком сильно зависит от искусственно созданной техногенной среды обитания.

Однако, в результате наших исследований мы выявили, что переполяризация повлечет за собой цепочку событий, влияющих на климат нашей планеты. Поэтому задачами для дальнейшего изучения ученых мы видим моделирование ситуации, предсказание последствий и направление усилий для предотвращения последствий переполяризации Земли.

По окончании работы я с уверенностью могу сказать, что справился с поставленной целью. Довольно подробно рассмотрел, как магнитные силы влияют на живые организмы, человека. В результате ее завершения я понял, что магнетизм – это наука будущего, многочисленные тайны хранит она в себе. Решить их – значит научиться жить в гармонии с природой, с Землей, с Вселенной. Я надеюсь, что приобретенные знания пригодятся мне в дальнейшей жизни. В любом случае работа над этим проектом была увлекательной и познавательной. Ведь, по словам Альберта Эйнштейна: «Радость видеть и понимать – есть самый прекрасный дар природы!»

Проводя данную исследовательскую работу, мы узнали много нового о магнитном поле и магнитных бурях. Прочитав много теоретического материала, узнали, как магнитная буря влияет на здоровье человека. Проведя статистическую обработку результатов наших исследований, мы пришли к выводу, что магнитная буря влияет на здоровье человека, в большей степени на людей, которые имеют хронические заболевания, травмы, инвалидность, а также чем старше, тем более метеозависим. Правда, какой – либо пропорциональной зависимости мы не выявили.

Главное правило, которое мы вывели для себя и рекомендуем всем для того, чтобы не реагировать на метеоусловия, необходимо постоянно укреплять здоровье, заниматься физкультурой, правильно организовать режим работы и отдыха, питание.

Я думаю, что, выполняя исследовательский проект, я приобрел умения критически работать с полученной информацией, анализировать и сопоставлять имеющие факты, находить пути решения возникающих проблем. Все это мне необходимо будет для моего дальнейшего успешного продолжения образования.

 

Магнитное поле - реферат

 
Источниками магнитного поля являются движущиесяэлектрические заряды (токи) . Магнитное поле возникает в пространстве, окружающем проводники с током, подобно тому, как в пространстве, окружающем неподвижные электрические заряды, возникает электрическое поле. Магнитное поле постоянных магнитов также создается электрическими микротоками, циркулирующими внутри молекул вещества (гипотеза Ампера). Для описания магнитного поля необходимо ввести силовую характеристику поля, аналогичную вектору напряженностиэлектрического поля. Такой характеристикой является вектор магнитной индукции Вектор магнитной индукции определяет силы, действующие на токи или движущиеся заряды в магнитном поле. За положительное направление вектора принимается направление от южного полюса S к северному полюсу N магнитной стрелки, свободно устанавливающейся в магнитном поле. Таким образом, исследуя магнитное поле, создаваемое током или постоянным магнитом, с помощью маленькой магнитной стрелки, можно в каждой точке пространства Для того, чтобы количественно описать магнитное поле, нужно указать способ определения не только направления вектора но и его модуляМодуль вектора магнитной индукции равен отношению максимального значения силы Ампера, действующей на прямой проводник с током, к силе тока I в проводнике и его длине l : Сила Ампера направлена перпендикулярно вектору магнитной индукции и направлению тока, текущего по проводнику. Для определения направления силы Ампера обычно используют правило левой руки : если расположить левую руку так, чтобы линии индукции входили в ладонь, а вытянутые пальцы были направлены вдоль тока, то отведенный большой палец укажет направление силы, действующей на проводник. Межпланетное магнитное поле Если бы межпланетное пространство было вакуумом, то единственными магнитными полями в нем могли быть лишь поля Солнца и планет, а также поле галактического происхождения, которое простирается вдоль спиральных ветвей нашей Галактики. При этом поля Солнца и планет в межпланетном пространстве были бы крайне слабы. На самом деле межпланетное пространство не является вакуумом, а заполнено ионизованным газом, испускаемым Солнцем (солнечным ветром). Концентрация этого газа 1-10 см-3 , типичные величины скоростей между 300 и 800 км/с, температура близка к 105 К (напомним, что тем­пература короны 2×106 К). Солнечный ветер – истечение плазмы солнечной короны в межпланетное пространство. На уровне орбиты Земли средняя скорость частиц Солнечного ветра (протонов и электронов) около 400 км/с, число частиц – несколько десятков в 1см3 . Английский ученый Уильям Гильберт, придворный врач королевы Елизаветы, в 1600 г. впервые показал, что Земля является магнитом, ось которого не совпадает с осью вращения Земли. Следовательно, вокруг Земли, как и около любого магнита, существует магнитное поле. В 1635 г. Геллибранд обнаружил, что поле земного маг­нита медленно меняется, а Эдмунд Галлей провел первую в мире магнитную съемку океанов и создал первые миро­вые магнитные карты (1702 г.). В 1835 г. Гаусс провел сферический гармонический анализ магнитного поля Земли. Он создал первую в мире магнитную обсерваторию в Гёттингене. Несколько слов о магнитных картах. Обычно через каждые 5 лет распределение магнитного поля на поверх­ности Земли представляется магнитными картами трех или более магнитных элементов. На каждой из таких карт проводятся изолинии, вдоль которых данный элемент имеет постоянную величину. Линии равного склонения D назы­ваются изогонами, наклонения I – изоклинами, величины полной силы В – изодинамическими линиями или изодинами. Изомагнитные линии элементов H, Z, Х и Y назы­ваются соответственно изолиниями горизонтальной, вер­тикальной, северной или восточной компонент. Вернемся к рисунку. Там показан круг с угловым радиу­сом 90°– d, который описывает положение Солнца на зем­ной поверхности. Дуга большого круга, проведенная через точку Р и геомагнитный полюс В, пересекает этот круг в точках H’n и H’m , которые указывают положение Солнца соответственно в моменты гео­магнитного полудня и геомаг­нитной полуночи точки Р. Эти моменты зависят от широты точки Р. Положения Солнца в местные истинные полдень и полночь указаны точками Hn и Нmсоответственно. Когда d по­ложительно (лето в северном полушарии), то утренняя поло­вина геомагнитных суток не равна вечерней. В высоких ши­ротах геомагнитное время мо­жет очень сильно отличаться от истинного или среднего вре­мени в течение большей части суток. Говоря о времени и систе­мах координат, скажем еще об учете эксцентричности магнитного диполя. Эксцентрич­ный диполь медленно дрейфует наружу ( к северу и к западу) с 1836 г. Экваториальную плоскость он пересел? примерно в 1862 г. Его траектория по радиальной проек­ции расположена в районе о-ва Гилберта в Тихом океане ДЕЙСТВИЕ МАГНИТНОГО ПОЛЯ НА ТОК В пределах каждого сектора скорость солнечного ветра и плотность частиц систематически изменяются. Наблю­дения с помощью ракет показывают, что оба параметра резко увеличиваются на границе сектора. В конце второго дня после прохождения границы сектора плотность очень быстро, а затем, через два или три дня, медленно начинает расти. Скорость солнечного ветра уменьшается медленно на второй или третий день после достижения пика. Сек­торная структура и отмеченные вариации скорости и плот­ности тесно связаны с магнитосферными возмущениями. Секторная структура довольно устойчива, поэтому вся структура потока вращается с Солнцем по крайней мере в течение нескольких солнечных оборотов, проходя над Землей приблизительно через каждые 27 дней.

 


Мы привыкли к магниту и относимся к нему чуточку снисходительно как к устаревшему атрибуту школьных уроков физики, порой даже не подозревая, сколько магнитов вокруг нас. В наших квартирах десятки магнитов: в электробритвах, динамиках, магнитофонах, в часах, в банках с гвоздями, наконец. Сами мы – тоже магниты: биотоки, текущие в нас, рождают вокруг нас причудливый узор магнитных силовых линий. Земля, на которой мы живём, - гигантский голубой магнит. Солнце – жёлтый плазменный шар – магнит ещё более грандиозный. Галактик и туманности, едва различимые телескопами, - непостижимые по размерам магниты. Термоядерный синтез, магнитодинамическое генерирование электроэнергии, ускорение заряженных частиц в синхротронах, подъём затонувших судов – всё это области, где требуются грандиозные, невиданные раньше по размерам магниты. Проблема создания сильных, сверхсильных, ультрасильных и ещё более сильных магнитных полей стала одной из основных в современной физике и технике.

Магнит известен человеку с незапамятных времён. До нас дошли упоминания
о магнитах и их свойствах в трудах Фалеса Милетского (прибл. 600 до н.э.) и Платона (427–347 до н.э.). Само слово «магнит» возникло в связи с тем, что природные магниты были обнаружены греками в Магнесии (Фессалия).
Естественные (или природные) магниты встречаются в природе в виде залежей магнитных руд. В Тартуском университете находится самый крупный известный естественный магнит. Его масса составляет 13 кг, и он способен поднять груз в 40 кг.
Искусственные магниты - это магниты созданные человеком на основе различных ферромагнетиков. Так называемые «порошковые» магниты (из железа, кобальта и некоторых других добавок) могут удержать груз более чем 5000 раз превышающий их собственную массу.
Существуют искусственные магниты двух разных видов:
Одни – так называемые постоянные магниты, изготовляемые из «магнитно-твердых» материалов. Их магнитные свойства не связаны с использованием внешних источников или токов.
К другому виду относятся так называемые электромагниты с сердечником из «магнитно-мягкого» железа. Создаваемые ими магнитные поля обусловлены в основном тем, что по проводу обмотки, охватывающей сердечник, проходит электрический ток.
В 1600 году в Лондоне вышла книга королевского врача В. Гильберта “О магните, магнитных телах и большом магните - Земле”. Это сочинение явилось первой известной нам попыткой исследования магнитных явлений с позиций науки. В этом труде собраны имевшиеся тогда сведения об электричестве и магнетизме, а также результаты собственных экспериментов автора.
Из всего, с чем сталкивается человек, он прежде всего стремится извлечь практическую пользу. Не миновал этой судьбы и магнит
В моей работе я попытаюсь проследить, как используются магниты человеком не для войны, а в мирных целях, в том числе применение магнитов в биологии, медицине, в быту.

ИСПОЛЬЗОВАНИЕ МАГНИТОВ.

Далее дан краткий обзор приборов и областей науки и техники где используются магниты.

КОМПАС, прибор для определения горизонтальных направлений на местности. Применяется для определения направления, в котором движется морское, воздушное судно, наземное транспортное средство; направления, в котором идет пешеход; направления на некоторый объект или ориентир. Компасы подразделяются на два основных класса: магнитные компасы типа стрелочных, которыми пользуются топографы и туристы, и немагнитные, такие, как гирокомпас и радиокомпас.
К 11 в. относится сообщение китайцев Шен Куа и Чу Ю об изготовлении компасов из природных магнитов и использовании их в навигации. Если
длинная игла из природного магнита уравновешена на оси, позволяющей ей свободно поворачиваться в горизонтальной плоскости, то она всегда обращена одним концом к северу, а другим – к югу. Пометив указывающий на север конец, можно пользоваться таким компасом для определения направлений.
Магнитные эффекты концентрировались у концов такой иглы, и поэтому их назвали полюсами (соответственно северным и южным).
Основное применение магнит находит в электротехнике, радиотехнике, приборостроении, автоматике и телемеханике. Здесь ферромагнитные материалы идут на изготовление магнитопроводов, реле и т.д.
В 1820 Г.Эрстед (1777–1851) обнаружил, что проводник с током воздействует на магнитную стрелку, поворачивая ее. Буквально неделей позже Ампер показал, что два параллельных проводника с током одного направления притягиваются друг к другу. Позднее он высказал предположение, что все магнитные явления обусловлены токами, причем магнитные свойства постоянных магнитов связаны с токами, постоянно циркулирующими внутри этих магнитов. Это предположение полностью соответствует современным представлениям.
Электромашинные генераторы и электродвигатели - машины вращательного типа, преобразующие либо механическую энергию в электрическую (генераторы), либо электрическую в механическую (двигатели). Действие генераторов основано на принципе электромагнитной индукции: в проводе, движущемся в магнитном поле, наводится электродвижущая сила (ЭДС). Действие электродвигателей основано на том, что на провод с током, помещенный в поперечное магнитное поле, действует сила.
Магнитоэлектрические приборы. В таких приборах используется сила взаимодействия магнитного поля с током в витках обмотки подвижной части, стремящаяся повернуть последнюю
Индукционные счетчики электроэнергии. Индукционный счетчик представляет собой не что иное, как маломощный электродвигатель переменного тока с двумя обмотками – токовой и обмоткой напряжения. Проводящий диск, помещенный между обмотками, вращается под действием крутящего момента, пропорционального потребляемой мощности. Этот момент уравновешивается токами, наводимыми в диске постоянным магнитом, так что частота вращения диска пропорциональна потребляемой мощности.
Электрические наручные часы питаются миниатюрной батарейкой. Для их работы требуется гораздо меньше деталей, чем в механических часах; так, в схему типичных электрических портативных часов входят два магнита, две катушки индуктивности и транзистор.
Замок - механическое, электрическое или электронное устройство, ограничивающее возможность несанкционированного пользования чем-либо. Замок может приводиться в действие устройством (ключом), имеющимся в распоряжении определенного лица, информацией (цифровым или буквенным кодом), вводимой этим лицом, или какой либо индивидуальной характеристикой (например, рисунком сетчатки глаза) этого лица. Замок обычно временно соединяет друг с другом два узла или две детали в одном устройстве. Чаще всего замки бывают механическими, но все более широкое применение находят электромагнитные замки.

Магнитные замки. В цилиндровых замках некоторых моделей применяются магнитные элементы. Замок и ключ снабжены ответными кодовыми наборами постоянных магнитов. Когда в замочную скважину вставляется правильный ключ, он притягивает и устанавливает в нужное положение внутренние магнитные элементы замка, что и позволяет открыть замок.

Динамометр - механический или электрический прибор для измерения силы тяги или крутящего момента машины, станка или двигателя.

Тормозные динамометры бывают самых различных конструкций; к ним относятся, например, тормоз Прони, гидравлический и электромагнитный тормоза.
Электромагнитный динамометр может быть выполнен в виде миниатюрного прибора, пригодного для измерений характеристик малогабаритных двигателей.
Гальванометр – чувствительный прибор для измерения слабых токов. В гальванометре используется вращающий момент, возникающий при взаимодействии подковообразного постоянного магнита с небольшой токонесущей катушкой (слабым электромагнитом), подвешенной в зазоре между полюсами магнита. Вращающий момент, а следовательно, и отклонение катушки пропорциональны току и полной магнитной индукции в воздушном зазоре, так что шкала прибора при небольших отклонениях катушки почти линейна. Приборы на его базе - самый распространенный вид приборов.


Спектр выпускаемых приборов широк и разнообразен: приборы щитовые постоянного и переменного тока (магнитоэлектрической, магнитоэлектри- ческой с выпрямителем и электромагнитной систем), комбинированные приборы ампервольтомметры, для диагностирования и регулировки электрооборудования автомашин, измерения температуры плоских поверхностей, приборы для оснащения школьных учебных кабинетов, тестеры и измерители всевозможных электрических параметров

Производство абразивов - мелких, твердых, острых частиц, используемых в свободном или связанном виде для механической обработки (в т.ч. для придания формы, обдирки, шлифования, полирования) разнообразных материалов и изделий из них (от больших стальных плит до листов фанеры, оптических стекол и компьютерных микросхем). Абразивы бывают естественные или искусственные. Действие абразивов сводится к удалению части материала с обрабатываемой поверхности. В процессе производства искусственных абразивов ферросилиций, присутствующий в смеси, оседает на дно печи, но небольшие его количества внедряются в абразив и позже удаляются магнитом.

Магнитные свойства вещества находят широкое применение в науке и технике как средство изучения структуры различных тел. Так возникли науки:

Магнетохимия (магнитохимия) - раздел физической химии, в котором изучается связь между магнитными и химическими свойствами веществ; кроме того, магнитохимия исследует влияние магнитных полей на химические процессы. магнитохимия опирается на современную физику магнитных явлений. Изучение связи между магнитными и химическими свойствами позволяет выяснить особенности химического строения вещества.
Магнитная дефектоскопия, метод поиска дефектов, основанный на исследовании искажений магнитного поля, возникающих в местах дефектов в изделиях из ферромагнитных материалов.

. Техника сверхвысокочастотного диапазона
Сверхвысоко частотный диапазон (СВЧ) - частотный диапазон электромагнитного излучения (100?300 000 млн. герц), расположенный в спектре между ультравысокими телевизионными частотами и частотами дальней инфракрасной области

Связь. Радиоволны СВЧ-диапазона широко применяются в технике связи. Кроме различных радиосистем военного назначения, во всех странах мира имеются многочисленные коммерческие линии СВЧ-связи. Поскольку такие радиоволны не следуют за кривизной земной поверхности, а распространяются по прямой, эти линии связи, как правило, состоят из ретрансляционных станций, установленных на вершинах холмов или на радиобашнях с интервалами около 50 км.

Термообработка пищевых продуктов. СВЧ-излучение применяется для термообработки пищевых продуктов в домашних условиях и в пищевой промышленности. Энергия, генерируемая мощными электронными лампами, может быть сконцентрирована в малом объеме для высокоэффективной тепловой обработки продуктов в т.н. микроволновых или СВЧ-печах, отличающихся чистотой, бесшумностью и компактностью. Такие устройства применяются на самолетных бортовых кухнях, в железнодорожных вагонах-ресторанах и торговых автоматах, где требуются быстрые подготовка продуктов и приготовление блюд. Промышленность выпускает также СВЧ-печи бытового назначения.
Быстрый прогресс в области СВЧ-техники в значительной мере связан с изобретением специальных электровакуумных приборов – магнетрона и клистрона, способных генерировать большие количества СВЧ-энергии. Генератор на обычном вакуумном триоде, используемый на низких частотах, в СВЧ-диапазоне оказывается весьма неэффективным.
Магнетрон. В магнетроне, изобретенном в Великобритании перед Второй мировой войной, эти недостатки отсутствуют, поскольку за основу взят совершенно иной подход к генерации СВЧ-излучения – принцип объемного резонатора
В магнетроне предусмотрено несколько объемных резонаторов, симметрично расположенных вокруг катода, находящегося в центре. Прибор помещают между полюсами сильного магнита.
Лампа бегущей волны (ЛБВ). Еще один электровакуумный прибор для генерации и усиления электромагнитных волн СВЧ-диапазона – лампа бегущей волны. Она представляет собой тонкую откачанную трубку, вставляемую в фокусирующую магнитную катушку.
Ускоритель частиц, установка, в которой с помощью электрических и магнитных полей получаются направленные пучки электронов, протонов, ионов и других заряженных частиц с энергией, значительно превышающей тепловую энергию.

В современных ускорителях используются многочисленные и разнообразные виды техники, в т.ч. мощные прецизионные магниты.

В медицинской терапии и диагностике ускорители играют важную практическую роль. Многие больничные учреждения во всем мире сегодня имеют в своем распоряжении небольшие электронные линейные ускорители, генерирующие интенсивное рентгеновское излучение, применяемое для терапии опухолей. В меньшей мере используются циклотроны или синхротроны, генерирующие протонные пучки. Преимущество протонов в терапии опухолей перед рентгеновским излучением состоит в более локализованном энерговыделении. Поэтому протонная терапия особенно эффективна при лечении опухолей мозга и глаз, когда повреждение окружающих здоровых тканей должно быть по возможности минимальным.

Представители различных наук учитывают магнитные поля в своих исследованиях. Физик измеряет магнитные поля атомов и элементарных частиц, астроном изучает роль космических полей в процессе формирования новых звёзд, геолог по аномалиям магнитного поля Земли отыскивает залежи магнитных руд, с недавнего времени биология тоже активно включилась в изучение и использование магнитов.

Биологическая наука первой половины XX века уверенно описывала жизненные функции, вовсе не учитывая существования каких-либо магнитных полей. Более того, некоторые биологи считали нужным подчеркнуть, что даже сильное искусственное магнитное поле не оказывает никакого влияния на биологические объекты.
В энциклопедиях о влиянии магнитных полей на биологические процессы ничего не говорилось. В научной литературе всего мира ежегодно появлялись единичные позитивные соображения о том или ином биологическом эффекте магнитных полей. Однако этот слабый ручеёк не мог растопить айсберг недоверия даже к постановке самой проблемы… И вдруг ручеёк превратился в бурный поток. Лавина магнитобиологических публикаций, словно сорвавшись с какой – то вершины, с начала 60 – х годов непрестанно увеличивается и заглушает скептические высказывания.

От алхимиков XVI века и до наших дней биологическое действие магнита много раз находило поклонников и критиков. Неоднократно в течение нескольких веков наблюдались всплески и спады интереса к лечебному действию магнита. С его помощью пытались лечить (и не безуспешно) нервные болезни, зубную боль, бессонницу, боли в печени и в желудке – сотни болезней.

Для лечебных целей магнит стал употребляться, вероятно, раньше, чем для определения сторон света.

Как местное наружное средство и в качестве амулета магнит пользовался большим успехом у китайцев, индусов, египтян, арабов. ГРЕКОВ, римлян и т.д. О его лечебных свойствах упоминают в своих трудах философ Аристотель и историк Плиний.

Во второй половине XX века широко распространились магнитные браслеты, благотворно влияющие на больных с нарушением кровяного давления (гипертония и гипотония).

Кроме постоянных магнитов используются и электромагниты. Их также применяют для широкого спектра проблем в науке, технике, электронике, медицине (нервные заболевания, заболевания сосудов конечностей, сердечно – сосудистые заболевания, раковые заболевания).

Более всего учёные склоняются к мысли, что магнитные поля повышают сопротивляемость организма.

Существуют электромагнитные измерители скорости движения крови, миниатюрные капсулы, которые с помощью внешних магнитных полей можно перемещать по кровеносным сосудам чтобы расширять их, брать пробы на определённых участках пути или, наоборот, локально выводить из капсул различные медикаменты.

Широко распространён магнитный метод удаления металлических частиц из глаза.

Большинству из нас известно исследование работы сердца с помощью электрических датчиков – электрокардиограмма. Электрические импульсы, вырабатываемые сердцем, создают магнитное поле сердца, которое в max значениях составляет 10-6 напряжённости магнитного поля Земли. Ценность магнитокардиографии в том, что она позволяет получить сведения об электрически “немых” областях сердца.

Надо отметить, что биологи сейчас просят физиков дать теорию первичного механизма биологического действия магнитного поля, а физики в ответ требуют от биологов побольше проверенных биологических фактов. Очевидно, что успешным будет тесное сотрудничество различных специалистов.

Важным звеном, объединяющим магнитобиологические проблемы, является реакция нервной системы на магнитные поля. Именно мозг первым реагирует на любые изменения во внешней среде. Именно изучение его реакций будет ключём к решению многих задач магнитобиологии.

Самый простой вывод, который можно сделать из выше сказанного – нет области прикладной деятельности человека, где бы не применялись магниты.

 

Магнитное поле Земли – это область вокруг нашей планеты, где действуют магнитные силы. Вопрос о происхождении магнитного поля до сих пор окончательно не решен. Однако большинство исследователей сходятся в том, что наличием магнитного поля Земля хотя бы отчасти обязана своему ядру. Земное ядро состоит из твердой внутренней и жидкой наружной частей. Вращение Земли создает в жидком ядре постоянные течения. Как читатель может помнить из уроков физики, движение электрических зарядов приводит к появлению вокруг них магнитного поля.

Одна из самых распространенных теорий, объясняющих природу поля, - теория динамо-эффекта - предполагает, что конвективные или турбулентные движения проводящей жидкости в ядре способствуют самовозбуждению и поддержанию поля в стационарном состоянии.

Землю можно рассматривать как магнитный диполь. Его южный полюс находится на географическом Северном полюсе, а северный, соответственно, на Южном. На самом деле, географический и магнитный полюса Земли не совпадают не только по "направлению". Ось магнитного поля наклонена по отношению к оси вращения Земли на 11,6 градуса. Из-за того что разница не очень существенная, мы можем пользоваться компасом. Его стрелка точно указывает на южный магнитный полюс Земли и почти точно на Северный географический. Если бы компас был изобретен 720 тысяч лет назад, то он бы указывал и на географический и на магнитный северный полюс. Но об этом чуть ниже.

Магнитное поле защищает жителей Земли и искусственные спутники от губительного воздействия космических частиц. К таким частицам относятся, например, ионизированные (заряженные) частицы солнечного ветра. Магнитное поле изменяет траекторию их движения, направляя частицы вдоль линий поля. Необходимость наличия магнитного поля для существования жизни сужает круг потенциально обитаемых планет (если мы исходим из предположения, что гипотетически возможные формы жизни похожи на земных обитателей).

Ученые не исключают, что часть планет земного типа не имеют металлического ядра и, соответственно, лишены магнитного поля. До сих пор считалось, что планеты, состоящие из твердых скальных пород, как и Земля, содержат три основных слоя: твердую кору, вязкую мантию и твердое или расплавленное железное ядро. В недавней работе ученые из Массачусетсткого технологического института предложили сразу два возможных механизма образования "скалистых" планет без ядра. Если теоретические выкладки исследователей подтвердятся наблюдениями, то формулу для расчета вероятности встретить во Вселенной гуманоидов или хотя бы что-то, напоминающее иллюстрации из учебника биологии, придется переписать.

Земляне тоже могут лишиться своей магнитной защиты. Правда, точно сказать, когда это произойдет, геофизики пока не могут. Дело в том, что магнитные полюса Земли непостоянны. Периодически они меняются местами. Не так давно исследователи установили, что Земля "помнит" о смене полюсов. Анализ таких "воспоминаний" показал, что за последние 160 миллионов лет магнитные север и юг менялись местами около 100 раз. Последний раз это событие произошло около 720 тысяч лет назад.

Смена полюсов сопровождается изменением конфигурации магнитного поля. Во время "переходного периода" на Землю проникает существенно больше космических частиц, опасных для живых организмов. Одна из гипотез, объясняющих исчезновение динозавров, утверждает, что гигантские рептилии вымерли именно во время очередной смены полюсов.

Кроме "следов" плановых мероприятий по смене полюсов исследователи заметили в магнитном поле Земли опасные подвижки. Анализ данных о его состоянии за несколько лет показал, что в последние месяцы в нем начали происходить опасные изменения. Настолько резких "движений" поля ученые не регистрировали уже очень давно. Вызывающая беспокойства исследователей зона находится в южной части Атлантического океана. "Толщина" магнитного поля в этом районе не превышает трети от "нормальной". Исследователи давно обратили внимание на эту "прореху" в магнитном поле Земли. Собранные за 150 лет данные показывают, что за этот период поле здесь ослабло на десять процентов.

На данный момент трудно сказать, чем это грозит человечеству. Одним из последствий ослабления напряженности поля может стать увеличение (пусть и незначительное) содержания кислорода в земной атмосфере. Связь между магнитным полем Земли и этим газом была установлена с помощью системы спутников Cluster – проекта Европейского космического агентства. Ученые выяснили, что магнитное поле ускоряет ионы кислорода и "выбрасывает" их в космическое пространство.

Несмотря на то, что магнитное поле нельзя увидеть, обитатели Земли хорошо его чувствуют. Перелетные птицы, например, отыскивают дорогу, ориентируясь именно на него. Существует несколько гипотез, объясняющих, как именно они ощущают поле. Одна из последних предполагает, что птицы воспринимают магнитное поле визуально. Особые белки – криптохромы – в глазах перелетных птиц способны менять свое положение под воздействием магнитного поля. Авторы теории считают, что криптохромы могут выполнять роль компаса.

Кроме птиц магнитное поле Земли вместо GPS используют морские черепахи. И, как показал анализ спутниковых фотографий, представленных в рамках проекта Google Earth, коровы. Изучив фотографии 8510 коров в 308 районах мира, ученые заключили, что эти животные предпочтительно ориентируют свои тела с севера на юг (или с юга на север). Причем "реперными точками" для коров служат не географические, а именно магнитные полюса Земли. Механизм восприятия коровами магнитного поля и причины именно такой реакции на него остаются неясными.

Кроме перечисленных замечательных свойств магнитное поле способствует появлению полярных сияний. Они возникают в результате резких изменений поля, происходящих в удаленных регионах поля.

Магнитное поле не обошли своим вниманием сторонники одной из "теорий заговора" – теории о лунной мистификации. Как уже упоминалось выше, магнитное поле защищает нас от космических частиц. "Собранные" частицы скапливаются в определенных частях поля – так называемых радиационных поясах Ван Алена. Скептики, не верящие в реальность высадок на Луну, считают, что во время пролета сквозь радиационные пояса астронавты получили бы смертельную дозу радиации.

Магнитное поле Земли - удивительное следствие законов физики, защитный щит, ориентир и создатель полярных сияний. Если бы не оно, жизнь на Земле, возможно, выглядела бы совсем иначе. В общем, если бы магнитного поля не было - его необходимо было бы придумать.

В 1820 г. обнаружил действие электрического тока на магнитную стрелку, что привело к возникновению новой области физики – электромагнетизма. Для научного творчества Эрстеда характерна идея взаимосвязи между различными явлениями природы; в частности, он один из первых высказал (1821) мысль, что свет представляет собой электромагнитные явления.

Магнитное поле Земли начинает сжиматься, колебаться – так происходит явление, получившее название «магнитная буря».