Требования к оценкам характеристик

Характеристики случайных величин и процессов

В результате эксперимента с имитационной статистической моделью, состоящего из наблюдений, мы получаем значений исследуемой случайной величины :

По этим данным нужно дать всестороннее описание величины a.

Определить случайную величину - это значит определить ее характеристики. В общем случае:

где - оценка характеристики случайной величины. Под характеристикой понимают следующее.

Во-первых, это характеристика величины:

· матожидание (среднее арифметическое);

· медиана (срединное значение);

· мода (наиболее вероятное значение);

· среднее геометрическое и др.

В рамках задач, характерных для нашей профессии, наиболее актуальным является матожидание. Как известно, матожидание определяет центр рассеивания случайной величины, наиболее полно отмечающее ее положение на числовой оси. Будем обозначать матожидание случайной величины так: .

Во-вторых, это характеристики рассеивания:

· дисперсия (матожидание квадрата отклонения случайной величины a );

· среднее квадратическое отклонение (квадратный корень из дисперсии); иногда целесообразно пользоваться этой характеристикой, так как она имеет размерность самой случайной величины;

· размах ( ).

В-третьих, это характеристика связи между случайными величинами (корреляция); степень связи определяется величиной коэффициента корреляции . В случайном процессе связь между значениями случайной функции в моменты времени , определяет коэффициент автокорреляции

В-четвертых, это характеристика закона распределения вероятностей случайной величины в виде плотности или функции распределения: или .

Требования к оценкам характеристик

Ограниченное число реализаций модели не позволяет точно определить значения этих характеристик, а только приближенно,

то есть так называемые оценки характеристик \Theta . Степень приближения оценок зависит от методов их вычислений (формул). Поскольку , где - случайные значения искомого параметра, то величина - случайная со своими значениями матожидания, дисперсии и т. п.

Как правило, математическая статистика может предложить разные формулы для вычисления оценки одной и той же характеристики. Следовательно, оценки могут быть более или менее точными или даже вовсе непригодными при имитационном моделировании.

Чтобы оценка наилучшим образом представляла искомую характеристику, нужно, чтобы она обладала следующими свойствами:

· несмещенностью;

· состоятельностью;

· эффективностью.

Несмещенность. Это свойство означает, что оценка не содержит систематической ошибки. Т. е., математическое ожидание оценки совпадает с действительным значением характеристики :

Состоятельность. Это свойство означает, что оценка приближается сколь угодно близко к истинному значению характеристики по мере увеличения объема выборки, т. е. увеличения числа реализаций модели. Формально это свойство записывают так:

при и любом .

Именно это свойство являлось определяющим при нахождении количественной связи между точностью, достоверностью оценок и числом реализаций модели.

Эффективность. Это свойство означает, что из всех несмещенных и состоятельных оценок следует предпочесть ту, у которой разброс значений меньше. Иначе: эффективной оценкой характеристики случайной величины называют ту, которая имеет наименьшую дисперсию:

- число возможных оценок.

В исследовании свойств оценок большая заслуга принадлежит англичанину Рональду А. Фишеру. Основные результаты он получил в 1912 г., когда ему было 22 года


 

Функция нормального распределения. Параметры функции. Правило трех сигм.

 

Нормальным называют распределение вероятностей непрерывной случайной величины, которое задается плотностью
.
Нормальное распределение задается двумя параметрами: – математическим ожиданием, – средним квадратическим отклонением.
График плотности нормального распределения называют нормальной кривой (кривой Гаусса).
Нормированным называют нормальное распределение с параметрами .
Плотность нормированного распределения задается формулой
.

Правило трех сигм

Вычислим вероятность того, что отклонение нормально распределенной случайной величины от своего математического ожидания по абсолютной величине не превысит .
Воспользуемся формулой для нахождения вероятности заданного отклонения, в которую в качестве подставим :
.
Таким образом, вероятность того, что отклонение случайной величины по абсолютной величине будет меньше утроенного среднего квадратического отклонения, равна 0,9973.
Другими словами, вероятность того, что абсолютная величина отклонения превысит , составляет всего 0,0027. Такое событие, исходя их принципа невозможности маловероятных событий, можно считать практически невозможным.
Вывод (правило трех сигм): если случайная величина распределена нормально, то абсолютная величина ее отклонения от математического ожидания не превосходит утроенного среднего квадратического отклонения.