оличественное определение.

1. Гравиметрия (определения Ва2+ в виде BaSO4).

2. Комплексонометрическое титрование избытка трилона Б раствором хлорида цинка в присутствие 20— 30 мл этанола при индикаторе эриохроме черном Т.

 

2. Исследование минерализатов на наличие соединений марганца

Ионы марганца, содержащиеся в минерализатах, определяют при помощи реакций с периодатом калия и персульфатом аммония. После окисления ионов марганца этими реактивами образуются перманганат-ионы. Обе реакции являются специфичными для обнаружения ионов марганца, так как катионы других металлов при окислении указанными реактивами не дают фиолетовой окраски.

Реакция с периодатом калия КIO4. Выполнение реакции. В пробирку вносят 1 мл минерализата, 4 мл воды (для создания оптимальных условий кислотности среды), 1 мл насыщенного раствора дигидрофосфата натрия - NaH2PO4 (для маскирования железа) и 0,2 г периодата калия. После нагревания пробирки на кипящей водяной бане в течение 20 мин. При наличии ионов марганца в минерализате раствор приобретает красно-фиолетовую или розовую окраску.

Реакция с персульфатом аммония. Ионы железа (III), которые могут быть в минерализатах в больших количествах, затрудняют распознавание окраски перманганат-ионов. Для маскировки ионов железа прибавляют фосфаты, которые с ионами железа образуют бесцветный комплекс [Fe(РО 4 ) 2 ] 3-.

Реакции окисления ионов марганца персульфатом мешают восстановители, обесцвечивающие перманганат-ионы, а также хлориды, бромиды и другие ионы, которые осаждают ионы серебра, являющиеся катализатором.

На протекание реакции персульфата с ионами марганца влияет рН среды. Эта реакция хорошо протекает в 3 н. кислоте. При недостаточной кислотности образуется темно-бурый осадок марганцовистой кислоты Н 2 MnO 4, а при большом избытке кислоты может происходить восстановление перманганат-ионов персульфатом:

Выполнение реакции. В пробирку вносят 1 мл минерализата, 4 мл воды (для создания оптимального рН среды), 1 мл насыщенного раствора дигидрофосфата натрия 9маскирование ионов железа). Смесь нагревают на кипящей водяной бане в течение 5—6 мин. К горячему раствору прибавляют 1 каплю 10%-го раствора нитрата серебра (катализатор) и 0,5 г персульфата аммония. Смесь снова нагревают в течение нескольких минут (до разложения избытка персульфата- прекращение выделения пузырьков газа). При наличии ионов марганца в минерализате появляется красно-фиолетовая или розовая окраска.

Появление слабо розовой окраски при окислении только перйодатом ориентирует химика на наличие в пробе естественно содержащегося Мn2+. Получение окрашивания в обоих случаях указывает на обнаружение Мn2+ в количествах, превышающих естественное содержание, и служит основанием для количественного определения Мn2+.

 

Количественное определение. ФЭК - Окраску перманганат-иона, полученную при качественном обнаружении марганца окислением перйодатом калия или натрия, используют для измерения ее оптической плотности.

Для этого в зависимости от интенсивности окраски окисленный раствор разбавляют водой до 10 мл и более.

Плотность окраски раствора, не содержащего осадка, измеряют на фотоэлектроколориметре. Раствором сравнения служит слепой опыт, в котором минерализат заменен 20% серной кислотой.

Калибровочный график строят по точным и проверенным растворам перманганата калия.

 

3. Исследование минерализатов на наличие хрома

После разрушения биологического материала серной и азотной кислотами в полученном минерализате хром в основном находится в трехвалентном состоянии. Сг3+ окисляют персульфатом аммония в присутствии катализатора (ионы серебра) до Cr6+ и обнаруживают последний реакциями с дифенилкарбазидом и образования надхромовых кислот.

Реакция с дифенилкарбазидом. Чувствительность этой реакции понижают ионы железа (III), сурьмы (III) и др. Для маскировки мешающих ионов прибавляют фосфаты.

Выполнение реакции. В пробирку вносят 1 мл минерализата, к которому прибавляют 4 мл воды, 1 каплю 10 %-го раствора нитрата серебра и 0,5 г персульфата аммония. Пробирку со смесью нагревают на кипящей водяной бане в течение 20 мин, а затем в нее вносят 1 мл насыщенного раствора дигидрофосфата натрия и по каплям добавляют 5 %-й раствор гидроксида натрия до рН=1,5—1,7. После доведения жидкости до указанного рН к ней добавляют 1 мл 0,25%-го раствора дифенилкарбазида в смеси этилового спирта и ацетона (1:1) и взбалтывают содержимое пробирки. При наличии ионов хрома в минерализате раствор приобретает розовую или красно-фиолетовую окраску.

Реакция специфична для Cr6+. Реакция высокочувствительна.

Реакция образования надхромовой кислоты. После прибавления пероксида водорода к дихромату образуется надхромовая кислота, имеющая голубую или сине-голубую окраску. Этой кислоте приписывают несколько формул: Н 2 CrO 6, Н 3 CrO 8, Н 7 CrO 10 и др.

Чувствительность реакции образования надхромовой кислоты понижается в присутствии солей железа (III) и сурьмы (III), для маскировки которых прибавляют фосфаты. Надхромовая кислота быстро разлагается в водных растворах. Поэтому из водных растворов ее экстрагируют органическими растворителями (этиловый эфир, этилацетат, амиловый спирт и др.), в которых надхромовая кислота более устойчива, чем в воде.

Выполнение реакции. В пробирку вносят 5 мл минерализата, по каплям прибавляют 30%-й раствор гидроксида натрия до рН = 7. Затем в пробирку вносят еще 1 мл минерализата и содержимое пробирки взбалтывают. После этого в пробирку вносят 1—2 капли 10 %-го раствора нитрата серебра, 0,5 г персульфата аммония и нагревают на кипящей водяной бане в течение 20 мин. Затем пробирку с содержимым охлаждают в ледяной воде в течение 10—15 мин. К охлажденной жидкости (10° и ниже) добавляют 1 мл насыщенного раствора дигидрофосфата натрия и проверяют рН среды. При необходимости жидкость доводят до рН=1,5—1,7. После этого в пробирку вносят уксусно-этиловый эфир, толщина слоя которого должна быть около 0,5—0,6 см, и 2—3 капли 25 %-го раствора пероксида водорода. Содержимое пробирки энергично взбалтывают. При наличии ионов хрома Cr 3+ в минерализате слой органического растворителя приобретает окраску (от голубой до синей).

Эта реакция абсолютно специфична для хрома и наглядна. Недостатком реакции является ее сравнительно низкая чувствительность — 2 мкг в 1 мл.

Количественное определение. ФЭК по реакция с дифенилкарбазидом. Расчет производится по калибровочному графику.

По окончании процесса разрушения биоматериала минерализат может содержать осадок грязно-зеленого цвета – вследствие соосаждения хрома при образовании сульфатов бария и/или свинца.. В этом случае во избежание потерь хрома, осадок обрабатывают при нагревании раствором персульфата аммония в 1% растворе серной кислоты. Осадок исследуют на свинец и барий, а фильтрат оставляют для количественного определения хрома.

Результаты определения при наличии грязно-зеленого осадка после минерализации суммируются: определение Сг3+ в осадке и в минерализате.

4. Исследование минерализатов на наличие свинца

После разрушения биологического материала смесью серной и азотной кислот свинец выпадает в минерализате в виде белого осадка сульфата свинца. Такого же цвета осадок сульфата бария образуется при отравлении соединениями бария. В результате соосаждения осадки сульфатов свинца и бария могут быть загрязнены ионами кальция, хрома, железа и др. При наличии хрома в осадке он имеет грязно-зеленую окраску. Для освобождения осадков сульфатов свинца и бария от примесей эти осадки промывают серной кислотой и водой, а затем осадок сульфата свинца растворяют в подкисленном растворе ацетата аммония:

Ход анализа на наличие свинца зависит от величины осадков, находящихся в минерализатах.

 

ПО ШВАЙКОВОЙ

После обработки осадка ацетатом аммония фильтрат исследуют на свинец реакцией с дитизоном:фильтрат встряхивают с хлороформным раствором дитизона. При наличии свинца при рН 7-10 хлорформный слой окрашивается в пурпурно-красный цвет. Реакция высокочувствительна (0,05 мкг в 1 мл), в описанных условиях почти абсолютно специфична: ионы свинца предварительно отделяются от иных катионов металлов путем осаждения в виде сульфата в процессе минерализации. Соосадится могут катионы железа (III) и хрома (III), из которых первый не образует дитизоната, а дитизонат второго – бесцветный.

При наличии описанной окраски возможно провести количественное определение (ФЭК), на основании результатов которого выбрать схему дальнейшего обнаружения катионов свинца.

 

Швайкова М.Д. предлагает после измерения оптической плотности раствор дитизоната встряхивать в 1н азотной или соляной кислотой, в результате чего дитизонат разрушается, катионы свинца переходят в раствор (нитрат либо хлорид). В зависимости от объема и интенсивности окраски раствора дитизоната берут 0,5-2 мл кислоты.

Соответственно при малом объеме водного слоя (0,5 мл) весь объем делят на две части и исследуют вышеописанные МКС-реакциями:

- с хлоридом цезия и иодидом калия;

- с ацетатом меди и нитритом калия

При большом объеме водного слоя (2 мл и более) выполняют вышеописанные цветные реакции:

- образование сульфида свинца,

- образование сульфата свинца

- образование хромата свинца

и МКС-реакциями

 

ПО КРАМАРЕНКО:

Исследование относительно больших осадков

При наличии больших осадков сульфата свинца (свыше 2 мг этого вещества) их отделяют от минерализата путем фильтрования или центрифугирования. Отфильтрованный осадок промывают 15—20 мл 0,2 н. раствора серной кислоты, а затем 10 мл воды. После этого осадок на фильтре 3 раза обрабатывают горячим подкисленным раствором ацетата аммония.

В зависимости от величины осадка для растворения сульфата свинца берут 5—6 мл раствора ацетата аммония. При малых количествах осадка используется 1—2 мл указанного раствора. При обработке осадков сульфатов свинца и бария подкисленным раствором ацетата аммония осадок сульфата бария остается на фильтре, а образовавшийся ацетат свинца переходит в фильтрат.

Раствор, содержащий ацетат свинца, доводят до рН = 5 (по универсальному индикатору) с помощью 10 %-го раствора аммиака и в полученном растворе определяют наличие ионов свинца при помощи реакций с иодидом калия, хроматом калия, сероводородной водой и серной кислотой.

Реакция с иодидом калия. В пробирку вносят 0,5 мл исследуемого раствора и несколько капель 5%-го раствора иодида калия. При наличии ионов свинца выпадает желтый осадок PbI 2, который растворяется при нагревании и вновь появляется в виде желтых пластинок при охлаждении раствора. При выполнении этой реакции следует избегать избытка реактива, в котором растворяется иодид свинца и образуется K 2 [PbI 4 ]. Предел обнаружения: 60 мкг свинца в пробе.

Реакция с хроматом калия. К 0,5 мл исследуемого раствора прибавляют 3—5 капель 5%-го раствора хромата калия. Образование оранжево-желтого осадка хромата бария указывает на наличие ионов свинца в растворе. Предел обнаружения: 2 мкг свинца в пробе.

Реакция с сероводородной водой. К 0,5 мл исследуемого раствора прибавляют 3—5 капель свежеприготовленной сероводородной воды. Появление черного осадка сульфида свинца (или мути) указывает на наличие ионов свинца в растворе. Предел обнаружения: 6 мкг свинца в пробе.

Реакция с серной кислотой. 0,5 мл исследуемого раствора вносят в пробирку и прибавляют 5 капель 10 %-го раствора серной кислоты. Появление белого осадка указывает на наличие ионов свинца в растворе. Предел обнаружения: 0,2 мг ионов свинца в пробе.

Исследование малых осадков

При наличии в минерализате небольшого белого осадка (до 2 мг свинца) его отделяют от жидкости фильтрованием или центрифугированием. Осадок промывают 15—20 мл 0,2 н. раствора серной кислоты, а затем 10 мл воды. Промытый осадок 2—3 раза обрабатывают горячим подкисленным раствором ацетата аммония. Общий объем употребляемого при этом раствора ацетата аммония не должен превышать 2 мл.

При обработке осадка раствором ацетата аммония растворяется сульфат свинца (образуется ацетат свинца), а осадок сульфата бария остается на фильтре.

Выделение ионов свинца из минерализата. К раствору, содержащему ацетат свинца, прибавляют хлороформный раствор дитизона и взбалтывают. При этом образуется однозамещенный дитизонат свинца Pb(HDz) 2, хлороформный раствор которого имеет оранжево-красную окраску:

Для маскировки мешающих ионов прибавляют цианид калия (осторожно — яд!) или гидроксиламин.

Образовавшийся в хлороформной фазе однозамещенный дитизонат свинца разлагают азотной кислотой. При этом образуется нитрат свинца, который переходит в водную фазу, а дитизон остается в хлороформе, окрашивая его в зеленый цвет. В водной фазе (реэкстракте) определяют наличие ионов свинца с помощью реакций с хлоридом цезия, ацетатом меди и др.

Переведение ионов свинца в дитизонат и разложение дитизоната азотной кислотой производится таким образом: исследуемый раствор, содержащий ацетат свинца, вносят в делительную воронку, прибавляют 1 мл 10 %-го раствора гидроксиламина гидрохлорида (но не сульфата) и 3 н. раствор аммиака до рН = 8 (по универсальному индикатору). После этого в делительную воронку вносят 3 мл хлороформа, несколько капель 0,01 %-го раствора дитизона в хлороформе (см. Приложение 1, реактив 12) и взбалтывают. При наличии ионов свинца в исследуемом растворе зеленая окраска хлороформного слоя переходит в красную или в оранжево-красную (образуется дитизонат). Хлороформный слой отделяют от водной фазы, к которой снова прибавляют 3 мл хлороформа и несколько капель 0,01 %-го раствора дитизона в хлороформе. Содержимое делительной воронки взбалтывают, а затем отделяют хлороформный слой. Взбалтывание водной фазы с новыми порциями хлороформа (по 3 мл) и 0,01 %-м раствором дитизона проводят до тех пор, пока хлороформный слой не перестанет изменять зеленую окраску на красную или оранжево-красную.

Окрашенные хлороформные вытяжки, содержащие дитизонат свинца, соединяют и переносят в делительную воронку, в которую для промывания этих вытяжек прибавляют 10 мл смеси, состоящей из равных объемов 0,5 %-го раствора цианида калия и 0,3 н. раствора аммиака, а затем взбалтывают. При наличии ионов свинца хлороформный слой сохраняет оранжево-красную окраску.

 

Для подтверждения наличия дитизоната свинца в хлороформном слое его отделяют от водной фазы и переносят в делительную воронку, в которую прибавляют 2 мл 1 н. раствора азотной кислоты и взбалтывают. При этом в водную фазу(реэкстракт) переходят ионы свинца, а дитизон остается в хлороформном слое, окрашивая его в зеленый цвет. От хлороформного слоя отделяют водную фазу и определяют в ней наличие ионов свинца при помощи описанных ниже реакций.

Реакция с хлоридом цезия и иодидом калия. На предметное стекло наносят 4—5 капель водной фазы, которую выпаривают на небольшом пламени. На сухой остаток наносят 2—3 капли 30%-го раствора уксусной кислоты. С одного края жидкости помещают 2—3 кристаллика хлорида цезия, а с противоположного — несколько кристалликов иодида калия. При наличии ионов свинца образуются желто-зеленые игольчатые кристаллы, собранные в виде сфероидов:

Реакция с ацетатом меди и нитритом калия. На предметное стекло наносят несколько капель водной фазы, которую на небольшом пламени выпаривают досуха. На сухой остаток наносят 1—2 капли 1 %-го раствора ацетата меди и выпаривают досуха. К сухому остатку прибавляют 2—3 капли 30 %-го раствора уксусной кислоты, а затем на край жидкости вносят несколько кристалликов нитрита калия. Образование черных или коричневых кристалликов, имеющих форму куба, указывает на наличие ионов свинца в водной фазе:

Реакции образования осадков. Оставшуюся водную фазу используют для обнаружения ионов свинца при помощи реакций образования осадков с иодидом калия, хроматом калия, сероводородной водой и серной кислотой. Выполнение этих реакций описано выше.

 

Количественное определение

1. ФЭК по реакции с дитизоном;

2. Комплексонометрия, если свинца более 2 мг

3. Йодометрия

 

5. Исследование минерализата на наличие серебра

Катион серебра мешает обнаружению и определению почти всех токсикологически важных элементов, кроме марганца и хрома, и поэтому должен быть своевременно удален из минерализата.

 

Для обнаружения ионов серебра в минерализатах применяют предварительную реакцию с дитизоном и подтверждающие - с хлоридами, иодидами, тиомочевиной и др.

 

Реакция с дитизоном. Ионы серебра с молекулами дитизона в кислой среде образуют однозамещенный дитизонат этого металла AgHDz:

Выполнению реакции образования дитизоната серебра мешают ртуть и некоторые другие металлы, катионы которых в кислой среде образуют дитизонаты. Однако дитизонат серебра отличается от дитизонатов ртути и других металлов окраской и отношением к растворам кислот. Однозамещенный дитизонат серебра имеет желтую окраску, а дитизонат ртути окрашен в оранжево-желтый цвет. Дитизонат серебра разлагается 0,5 н. раствором соляной кислоты, а дитизонат ртути в этих условиях не разлагается.

При более высоких значениях рН и недостаточном количестве конов серебра в растворе образуется двухзамещенный дитизонат Этого катиона Ag 2 Dz, имеющий красно-фиолетовую окраску. При избытке дитизона и подкислении растворов Ag 2 Dz легко переходит в AgHDz.

Выполнение реакции. В делительную воронку вносят 5 мл минерализата, 1 мл 8 н. раствора серной кислоты и 3 мл 0,01 %-го раствора дитизона в хлороформе или в четыреххлористом углероде. После встряхивания содержимого делительной воронки хлороформный слой приобретает желтую окраску (образуется AgHDz). Если в минерализате содержится незначительное количество ионов серебра, то желтая окраска AgHDz маскируется зеленой окраской избытка дитизона. Чтобы удалить избыток дитизона из хлороформного слоя, этот слой отделяют от водной фазы и взбалтывают с 5 мл 0,3 н. раствора аммиака. При этом аммониевая соль дитизона переходит в водную фазу, а хлороформный слой, содержащий дитизонат серебра, имеет желтую окраску. Затем от водной фазы отделяют хлороформный слой, который взбалтывают с 5 мл 0,5 н. раствора соляной кислоты. При этом дитизонат серебра разлагается. Освободившийся дитизон остается в хлороформном слое, окрашивая его в зеленый цвет (отличие от ртути), и образуется осадок хлорида серебра.

 

При положительном результате реакции с дитизоном производят выделение катиона серебра из минерализата путем осаждения в хлорид.

Реакция с хлоридом натрия.К 100 мл минерализата прибавляют 0,5 г хлорида натрия и эту смесь хорошо взбалтывают. Если в минерализате содержатся ионы серебра, то образуется белый осадок AgCl. При наличии в минерализате незначительного количества ионов серебра белый осадок может не появиться. Независимо от появления осадка смесь минерализата и хлорида натрия нагревают до 80 °С и оставляют на 2 ч. Если и за это время не образуется осадок, то указанную смесь оставляют на сутки. После этого образовавшийся осадок хлорида серебра отфильтровывают. Полученный при этом фильтрат используют для обнаружения катионов других металлов, имеющих токсикологическое значение.

Находящийся на фильтре осадок хлорида серебра промывают 0,5 н. раствором соляной кислоты, а затем дистиллированной водой. После этого осадок растворяют в 0,5—4 мл 8 н. раствора аммиака (не допуская его избытка). Полученный при этом аммиакат серебра [Ag(NH3)2]Cl используют для обнаружения ионов серебра при помощи реакций с азотной кислотой, иодидом калия и тиомочевиной.

Реакция с азотной кислотой.К 0,1—0,5 мл раствора, содержащего аммиакат серебра, добавляют азотную кислоту до рН = 1. Образование белого осадка указывает на наличие ионов серебра в растворе:

Реакция с иодидом калия. К 0,5 мл раствора, содержащего аммиакат серебра, прибавляют 0,5 мл насыщенного раствора иодида калия. Появление мути или желтого осадка Agl указывает на наличие серебра в исследуемом растворе.

Реакция с тиомочевиной и пикратом калия. 1—2 капли раствора, содержащего аммиакат серебра, наносят на предметное стекло и выпаривают досуха. На сухой остаток наносят несколько капель насыщенного раствора тиомочевины, а затем — каплю насыщенного раствора пикрата калия. Образование желтых призматических кристаллов или сростков из них указывает на наличие серебра в исследуемой пробе.

Количественное определение

1. Титриметрия (роданид аммония в присутствии железо-аммонийных квасцов)

2. ФЭК по реакции с дитизоном

6. Исследование минерализатов на наличие цинка

Наличие ионов цинка в минерализате вначале определяют при помощи предварительной реакции с дитизоном, имеющей отрицательное судебно-химическое значение (если результат этой предварительной реакции отрицательный, то дальнейшее исследование минерализата на наличие ионов цинка не проводят).

Реакция с дитизоном. При взаимодействии ионов цинка с дитизоном образуется однозамещенный дитизонат этого металла Zn(HDz) 2 :

Дитизонат цинка хорошо экстрагируется хлороформом и некоторыми другими органическими растворителями. Раствор дитизоната цинка в хлороформе имеет пурпурно-красную окраску. Кроме ионов цинка с дитизоном окрашенные комплексы образуют и катионы некоторых других металлов, для маскировки которых прибавляют раствор тиосульфата натрия или тиомочевины.

Выполнение реакции. В стакан вносят 0,5 мл минерализата, к которому прибавляют 0,25 мл насыщенного раствора тиосульфата натрия, а затем по каплям прибавляют 5 %-й раствор гидроксида калия до рН = 4,5—5,0 (по универсальному индикатору). К этой смеси прибавляют 1 мл ацетатного буферного раствора (рН = 5), жидкость хорошо перемешивают и количественно переносят в делительную воронку, в которую прибавляют 1 мл хлороформа, 2 капли 0,01 %-го раствора дитизона в хлороформе, а затем содержимое делительной воронки хорошо взбалтывают. При наличии ионов цинка в минерализате зеленая окраска хлороформного слоя исчезает, а появляется розовая или пурпурно-красная окраска этого слоя (в зависимости от количества ионов цинка).

При положительном результате реакции с дитизоном проводят дальнейшее исследование минерализата на ионы цинка. С этой целью из минерализата ионы цинка выделяют в виде диэтилдитиокарбамата. Полученный диэтилдитиокарбамат цинка разлагают кислотой и в водной фазе определяют наличие ионов цинка при помощи соответствующих реакций.

Выделение ионов цинка из минерализата.От прибавления раствора диэтилдитиокарбамата натрия к минерализату при рН = 8,5 образуется внутрикомплексное соединение:

Диэтилдитиокарбамат цинка экстрагируют хлороформом, а затем разлагают кислотой. Выделившаяся при этом диэтилдитиокарбаминовая кислота в кислой среде быстро разлагается на диэтиламин и сероуглерод. Для маскировки ионов железа, кадмия и меди, которые тоже экстрагируются из минерализата в виде диэтилдитиокарбаматов, прибавляют растворы сегнетовой соли и тиомочевины или же растворы лимонной кислоты и тиосульфата натрия.

В делительную воронку вносят 10 мл минерализата, 4 мл 10 %-го раствора сегнетовой соли (или 4 мл 20 %-го раствора лимонной кислоты) и 1 мл насыщенного раствора тиосульфата натрия. К. этой смеси добавляют несколько капель индикатора (0,1 %-ый раствор нильского голубого), а затем по каплям добавляют 2,5 н. раствор гидроксида натрия до появления розовой окраски. К содержимому делительной воронки добавляют 2 н. раствор серной кислоты до рН = 8,5 (по универсальному индикатору), 3 мл 1 %-го раствора диэтилдитиокарбамата натрия в смеси воды и спирта (3:1) и 5 мл хлороформа. Содержимое делительной воронки интенсивно взбалтывают, а затем хлороформный слой отделяют от водной фазы и переносят в другую делительную воронку. К хлороформному слою прибавляют 10 мл воды и взбалтывают. Водную фазу отделяют от хлороформного слоя, к которому прибавляют 3 мл 1 н. раствора соляной кислоты, а затем взбалтывают в течение 0,5 мин. После взбалтывания от хлороформной фазы отделяют водную фазу, в которой определяют наличие ионов цинка при помощи реакций с гексацианоферратом (II) калия, сульфидом натрия и тетрароданомеркуроатом аммония.

Реакция с гексацианоферратом (II) калия. К 1 мл водной фазы добавляют 5 %-й раствор гидроксида калия до рН = 5 (по универсальному индикатору) и 3—4 капли 5 %-го раствора гексацианоферрата (II) калия. При наличии ионов цинка выделяется белый осадок:

При добавлении избытка реактива может образоваться более растворимый осадок [Zn 2 [Fe(CN) 6 ].

Реакция с сульфидом натрия. К 1 мл водной фазы прибавляют 5 %-й раствор гидроксида калия до рН = 5 и 3—4 капли 5 %-го свежеприготовленного раствора сульфида натрия. Образование белого осадка ZnS указывает на наличие ионов цинка в водной фазе.

Реакция с тетрароданомеркуроатом аммония. На предметное стекло наносят 3—4 капли водной фазы, которую выпаривают досуха. На сухой остаток наносят каплю 10 %-го раствора уксусной кислоты и каплю раствора тетрароданомеркуроата аммония (NH 4 ) 2 [Hg(SCN) 4 j. В присутствии ионов цинка образуются бесцветные одиночные клиновидные кристаллы или дендриты Zn [Hg(SCN) 4 ].

Количественное определение - выделение из минерализата в виде (ДДТК)2Zn при рН 8,5, реэкстракция в водный слой и комплексонометрическое определение при индикаторе эриохроме черном Т.

7. Исследование минерализатов на наличие соединений кадмия

Дробное обнаружение и определение кадмия, так же как и меди и цинка, основано на экстракции его из минерализата хлороформом в виде диэтилдитиокарбамината (ДДТК) Cd при рН 12, реэкстракции в водную фазу и подтверждении наличия Cd2+ (в водном растворе) химическими реакциями.

 

Выделение ионов кадмия из минерализата. В минерализате содержится ряд ионов, которые могут мешать обнаружению кадмия при помощи соответствующих реакций. Поэтому вначале производят выделение ионов кадмия из минерализата. С этой целью к минерализату прибавляют диэтилдитиокарбамат натрия NaДДТК, который с ионами кадмия дает устойчивое внутрикомплексное соединение Сd(ДДТК) 2 :

Поскольку с NaДДТК могут давать комплексные соединения и другие находящиеся в минерализате ионы (Fe3+, Cu2+), их маскируют введением комплексообразователя - сегнетовой соли (калий-натрий тартрата).

Диэтилдитиокарбаминаты кадмия и цинка в отличие от диэтилдитиокарбаминатов других катионов нестойки и легко разрушаются даже 0,1 н. раствором кислоты.

Введение глицерина в реакционную смесь обеспечивает более полное выделение Cd2+, а введение едкой щелочи — отделение Cd2+ от Zn2+ (образование сравнительно прочного цинката).

 

Образовавшийся Сd(ДДТК)2 экстрагируют хлороформом, а затем разлагают его соляной кислотой. В солянокислом растворе определяют наличие ионов кадмия при помощи реакций с сульфидом натрия, бруцином и пиридином (в присутствии бромида калия).

Выделение: В колбу вносят 10 мл минерализата, прибавляют 2 мл 10 %-го водного раствора глицерина, 4 мл 10 %-го раствора сегнетовой соли и 2—3 капли 0,1 %-го спиртового раствора нильского голубого, являющегося индикатором. Затем прибавляют 2,5 н. раствор гидроксида натрия до появления розовато-красной окраски раствора. Содержимое колбы перемешивают и переносят в делительную воронку, в которую прибавляют 3 мл 1 %-го раствора диэтилдиокарбамата натрия в смеси этилового спирта и воды (1:3) и 10 мл хлороформа. Содержимое делительной воронки энергично взбалтывают в течение 0,5 мин. После разделения фаз отделяют хлороформный слой, переносят его в другую делительную воронку, прибавляют 10 мл воды и взбалтывают. Затем водную фазу отделяют, а к хлороформному слою прибавляют 2 мл 1 н. раствора соляной кислоты. Содержимое делительной воронки взбалтывают в течение 0,5 мин, а затем от хлороформного слоя отделяют водную фазу, в которой определяют наличие ионов кадмия.

Реакция с сульфидом натрия. К 1 мл водной фазы по каплям прибавляют 2,5 н. раствор гидроксида натрия до рН = 5 (по универсальному индикатору) и 3—4 капли 5% -го свежеприготовленного раствора сульфида натрия. Образование желтого осадка CdS указывает на наличие ионов кадмия в растворе.

При отрицательном результате этой реакции дальнейшее исследование водной фазы на наличие ионов кадмия не производят. При положительной реакции образования сульфида кадмия дополнительно проверяют наличие ионов кадмия в водной фазе.

Реакция с гексацианоферратом калиятакже имеет отрицательное судебно-химическое значение. К 1 мл солянокислого раствора добавляют по каплям раствор едкого кали до рН 5,0 и 2— 3 капли 5% раствора ферроцианида калия — выпадает осадок или муть белого цвета.

Реакция с бруцином и бромидом калия.2—3 капли водной фазы наносят на предметное стекло и выпаривают досуха. На сухой остаток наносят каплю насыщенного раствора бруцина в 1 н. растворе серной кислоты и каплю 5 %-го раствора бромида калия. При наличии ионов кадмия образуются бесцветные призматические кристаллы, собранные в виде сфероидов.

Реакция с пиридином и бромидом калия.На предметное стекло наносят 2—3 капли водной фазы, которую выпаривают досуха. На сухой остаток наносят каплю пиридина и каплю 5 %-го раствора бромида калия. При наличии ионов кадмия в растворе образуются бесцветные призматические кристаллы, собранные в виде сфероидов.

 

Количественное определениеосновано на выделении кадмия из минерализата при рН 12 в виде (ДДТК)Сd, реэкстракции с помощью 1 н. раствора НС1 в водную фазу и

1) ФЭК

2) комплексонометрия в присутствии индикатора хромогена черного ЕТ-00.

8. Исследование минерализатов на наличие соединений меди

В химико-токсикологическом анализе обнаружение ионов меди основано на выделении их из минерализата в виде диэтилдитиокарбамата при рН=3, который экстрагируют хлороформом, а затем разлагают хлоридом ртути (II). Освободившиеся при этом ионы меди определяют при помощи соответствующих реакций.

Выделение ионов меди из минерализата. К минерализату прибавляют раствор диэтилдитиокарбамата свинца (по правилу рядов Танаева медь вытесняет свинец). При этом образуется диэтилдитиокарбамат меди:

Диэтилдитиокарбамат меди из минерализата экстрагируют хлороформом. В зависимости от количества меди в минерализате хлороформный слой, содержащий диэтилдитиокарбамат меди, приобретает желтую или коричневую окраску.

 

Диэтилдитиокарбамат меди разлагают хлоридом ртути (II). При этом образуется бесцветный диэтилдитиокарбамат ртути, а ионы меди переходят в водную фазу.

Выделение ионов меди из минерализата производится таким образом: к 10 мл минерализата прибавляют 2—3 капли индикатора (бесцветный 0,1 %-й спиртовой раствор, 2,4-динитрофенола), а затем небольшими порциями прибавляют 25 %-й раствор аммиака до рН=3 (до перехода окраски индикатора в желтую). Жидкость переносят в делительную воронку, в которую прибавляют 5 мл хлороформного раствора диэтилдитиокарбамата свинца и взбалтывают. При этом хлороформный слой приобретает желтую или коричневую окраску. Хлороформный слой отделяют от водной фазы и переносят его в другую делительную воронку, в которую прибавляют 6 н. раствор соляной кислоты (для разрушения избытка диэтилдитиокарбамата свинца), взбалтывают и отделяют водную фазу. К хлороформному слою по каплям прибавляют 1 %-й раствор хлорида ртути (II). После этого содержимое делительной воронки взбалтывают. Прибавляют 1 %-й раствор хлорида ртути (II) (по каплям) и взбалтывают до тех пор, пока не наступит полное обесцвечивание хлороформного слоя. Затем, не отделяя хлороформный слой, в делительную воронку вносят 1,5—2,0 мл воды и интенсивно взбалтывают. Через 2—3 мин хлороформный слой отделяют от водной фазы, которую исследуют на наличие ионов меди при помощи реакций с тетрароданомеркуроатом аммония, гексацианоферратом (II) калия и с пиридин-роданидным реактивом.

При отсутствии окраски с ДДТК дальнейшее исследование на катион меди не проводят.

Реакция с тетрароданомеркуроатом аммония. От прибавления раствора тетрароданомеркуроата аммония (NH4)2 [Hg(SCN)4] к раствору, содержащему ионы меди, образуется желтовато-зеленый кристаллический осадок Cu[Hg(SCN)4]. От прибавления ионов цинка выпадает осадок Cu[Hg(SCN 4 ]·n[g(SC) 4 ], имеющий розовато-лиловую или фиолетовую окраску.

Выполнению реакции на ионы меди с тетрароданомеркуроатом аммония мешают ионы железа (II), кобальта и никеля, которые с указанным реактивом тоже дают окрашенные осадки. Однако проведение реакции после выделения меди в виде ДДТК из минерализата устраняет мешающее влияние этих ионов.

Выполнение реакции. К 0,5 мл водной фазы прибавляют несколько капель 5%-го раствора сульфата цинка и несколько капель раствора тетрароданомеркуроата аммония. При наличии иоиов меди выпадает розовато-лиловый или фиолетовый осадок.

Реакция с гексацианоферратом (II) калия. От прибавления гексацианоферрата (II) калия K 4 [Fe(CN) 6 ] к соединениям меди образуется красно-бурый осадок Cu 2 [Fe(CN) 6 ].

Выполнение реакции.К 0,5 мл водной фазы прибавляют 2 капли 5 %-го раствора гексацианоферрата (II) калия. При наличии ионов меди выпадает красно-бурый осадок.

Реакция с пиридин-роданидным реактивом.От прибавления пиридин-роданидного реактива к раствору, содержащему ионы меди, образуется комплекс [(РуН) 2 ] [Cu(SCN) 4 ], который выпадает в осадок или образуется муть того же состава. Образовавшийся осадок пиридин-роданидного комплекса меди растворяется в хлороформе, окрашивая его в изумрудно-зеленый цвет.

Выполнение реакции.В пробирку вносят 0,5 мл водной фазы, к которой по каплям прибавляют 1—2 мл пиридин-роданидного реактива. При этом образуется осадок (или муть), к которому прибавляют 2 мл хлороформа и хорошо взбалтывают. При наличии ионов меди хлороформный слой приобретает изумрудно-зеленую окраску.

Количественное определение

1. Комплексонометрия (трилон Б, индикатор мурексид)

2. ФЭК по измерению плотности окраски (ДДТК)2Си

9. Исследование минерализата на наличие сурьмы

Для обнаружения сурьмы в минерализате применяют реакцию образования ионного ассоциата с малахитовым зеленым и реакцию с тиосульфатом натрия.

Реакция с малахитовым зеленым. Эта реакция основана на том, что малахитовый зеленый, являющийся основным красителем, с ацидокомплексом сурьмы [SbCl 6 ] - образует ионный ассоциат, который экстрагируется ксилолом или толуолом, окрашивая эти растворители в синий или голубой цвет. Для обнаружения сурьмы вместо малахитового зеленого можно применять бриллиантовый зеленый

В минерализате сурьма находится в трехвалентном состоянии. При выполнении реакции на сурьму с малахитовым зеленым к смеси минерализата и раствора этого красителя прибавляют соляную кислоту, нитрит натрия, мочевину и сульфат натрия. Под влиянием нитрита натрия Sb(III) переходит в Sb(V):

Избыток нитрита натрия разлагают мочевиной:

 

Выполнение реакции.В делительную воронку вносят 5 мл минерализата, добавляют 1 мл концентрированной серной кислоты, 3 мл 5 н. раствора соляной кислоты и 2 капли 5 %-го раствора нитрита натрия. Смесь взбалтывают, а затем через 5 мин добавляют 1 мл насыщенного раствора мочевины и 7 капель 0,5 %-го раствора малахитового зеленого в смеси воды и этилового спирта (3:1), 2 г безводного сульфата натрия и 5 мл толуола. Содержимое делительной воронки взбалтывают в течение 10—15 с. При наличии сурьмы в минерализате толуольный слой приобретает синюю или голубую окраску. Окрашенный толуольный слой переносят в другую делительную воронку, прибавляют 3 мл 5 н. раствора серной кислоты и взбалтывают. При наличии сурьмы в минерализате толуольный слой не должен обесцвечиваться.

Этой реакции мешают ионы таллия, железа и золота.

Однако комплекс к железом легко разрушается в 35-40% серной кислоте.

Кроме того, с учетом неспецифичности данной реакции проводят подтверждающуюреакцию:

Реакция с тиосульфатом натрия. При взаимодействии трехвалентной сурьмы с тиосульфатом натрия в кислой среде при нагревании выпадает оранжевый осадок Sb2 S3 :

При определенных условиях протекания этой реакции вместо осадка Sb2 S3 может образоваться красный осадок серооксида сурьмы (сурьмяной киновари) Sb2 OS2 :

Большой избыток кислоты мешает реакции образования Sb2 S3, так как при этом происходит разложение тиосульфата натрия с выделением серы:

Выполнение реакции. В пробирку вносят 5 мл минерализата, прибавляют 5 капель насыщенного раствора тиосульфата натрия, а затем смесь кипятят в течение 1—2 мин. Образование оранжевого осадка Sb2 S3 указывает на наличие сурьмы в минерализате.

В этих условиях сульфиды железа и таллия растворимы, сульфид золота - черного цвета.

Естественно содержащиеся Sb, Fe и Аи описанными реакциями при химико-токсикологических исследованиях не обнаруживаются.

 

Количественное определение сурьмы

ФЭК по комплексу гексахлорсурьмиата (SbCl6) с малахитовым или бриллиантовым зеленым, экстрагируемому толуолом (на фоне толуола при L 610 нм)

 

 

10. Исследование минерализатов на наличие висмута

Для обнаружения висмута в минерализатах вначале выполняют предварительные реакциина ионы этого металла с тиомочевиной и оксином (8-оксихинолином).

При положительном результате этих реакций висмут выделяют из минерализата в виде диэтилдитиокарбамата, который экстрагируют хлороформом.

После прибавления кислоты к хлороформной вытяжке происходит разложение диэтилдитиокарбамата висмута.

Образовавшиеся при этом ионы висмута переходят в водную фазу, которую используют для обнаружения указанных ионов при помощи соответствующих реакций.

Реакция с тиомочевиной. При взаимодействии ионов висмута с тиомочевиной могут образовываться различного состава тиомочевинные комплексы, имеющие лимонно-желтую окраску:

Реакции образования тиомочевинных комплексов висмута мешают окислители. При небольших количествах катиона висмута окраску наблюдать трудно.

Выполнение реакции. В пробирку вносят 5 мл минерализата и прибавляют 3—5 мл насыщенного водного раствора тиомочевины. При наличии ионов висмута раствор приобретает лимонно-желтую окраску.

Реакция с оксихинолином основана на переведении ионов висмута в ацидокомплекс [ВiI4]-, который при взаимодействии с оксихинолином в кислой среде образует оранжево-красный осадок, представляющий собой ионный ассоциат (иодвисмутат оксина). Образование этого ионного ассоциата можно представить следующими уравнениями:

Этой реакции мешают окислители, которые выделяют йод из иодида калия, применяемого для получения ацидокомплекса [BiI 4]-.

Кроме этого, реакции образования йодвисмутата оксихинолина мешают катионы ряда металлов, которые дают осадки с оксином. Для маскировки мешающих ионов к смеси реагирующих веществ добавляют аскорбиновую кислоту, которая восстанавливает ионы железа (III), и сегнетовую соль (калия-натрия тартрат), связывающую другие ионы, мешающие обнаружению висмута.

Выполнение реакции.В пробирку вносят 10 мл минерализата, прибавляют по 0,5 г аскорбиновой кислоты, сегнетовой соли и иодида калия. При этом появляется интенсивно-желтая окраска (образуется иодвисмутат), которая не должна переходить в синюю от прибавления капли раствора крахмала. При появлении синей окраски к смеси реагирующих веществ по каплям прибавляют 10 %-й раствор тиосульфата натрия до исчезновения этой окраски. После этого по стенкам пробирки к смеси, имеющей желтую окраску, осторожно прибавляют 1—2 мл 2 %-го раствора оксина в 2 н. соляной кислоте. На границе соприкосновения раствора оксина и находящейся в пробирке жидкости через 1— 2 мин появляется оранжево-желтый осадок иодвисмутата оксина.

Если в исследуемой пробе содержится незначительное количество ионов висмута, то указанный осадок может появиться только через 30—60 мин. Поэтому, не дожидаясь образования осадка, содержимое пробирки переносят в делительную воронку, в которую прибавляют 3 мл смеси равных объемов ацетона и амилацетата, а затем взбалтывают. При наличии ионов висмута в минерализате слой органических растворителей (ацетон— амилацетат) приобретает оранжево-розовую окраску. Отрицательный результат этих реакций указывает на отсутствие ионов висмута в минерализате.

 

При положительном результате указанных выше реакций производят дальнейшее исследование минерализата на наличие ионов висмута. С этой целью ионы висмута выделяют из минерализата в виде комплекса с диэтилдитиокарбаминатом натрия.

Этот комплекс экстрагируют хлороформом, а затем разлагают кислотой.

Выделение ионов висмута из минерализата.Возможны два способа выделения катиона висмута.

1. В виде металлического висмута - 10 мл минерализата добавляют порциями 0,1—0,2 г цинковой пыли. По окончании реакции выпавший осадок металлического висмута отделяют центрифугированием, промывают дистиллированной водой и растворяют в нескольких каплях концентрированной НNОз при нагревании. Полученный раствор исследуют.

2. В виде ДДТКвисмута.К минерализату прибавляют раствор диэтилдитиокарбамата натрия. Ионы висмута при рН=14 с этим реактивом образуют внутрикомплексное соединение:

Кроме ионов висмута с диэтилдитиокарбаматом натрия дают внутрикомплексные соединения и некоторые другие ионы, которые могут содержаться в минерализате. Для маскировки этих ионов прибавляют раствор комплексона III (трилона Б). Образовавшийся комплекс диэтилдитиокарбамата висмута экстрагируют хлороформом, а затем разлагают азотной кислотой.

В делительную воронку вносят 10 мл минерализата, 0,1 г комплексона III и несколько капель 0,1 %-го спиртового раствора нильского голубого, являющегося индикатором. К этой смеси прибавляют 3 н. раствор гидроксида натрия до рН=12 (до перехода синей окраски индикатора в розовую). После доведения содержимого делительной воронки до необходимого рН к жидкости еще прибавляют 2—3 мл 3 н. раствора гидроксида натрия, а затем в делительную воронку вносят 3 мл 1 %-го раствора диэтилдитиокарбамата натрия (в смеси равных объемов этилового спирта и воды) и 5 мл хлороформа. Содержимое делительной воронки взбалтывают в течение 0,5 мин, а затем хлороформный слой отделяют в другую делительную воронку. Для промывания хлороформного слоя к нему прибавляют 5 мл 0,3 н. раствора гидроксида натрия и взбалтывают. После взбалтывания хлороформного слоя с раствором щелочи отделяют водную фазу. Хлороформный слой, содержащий диэтилдитиокарбамат висмута, переносят в делительную воронку, прибавляют 3 мл 4 н. раствора азотной кислоты. Содержимое делительной воронки взбалтывают в течение 1 мин и отделяют хлороформный слой, который в дальнейшем не исследуют. Водную фазу подвергают исследованию на наличие ионов висмута при помощи реакций с бруцином, хлоридом цезия и тиомочевиной.

Реакция с бруциноми бромидом калия.На предметное стекло наносят несколько капель водной фазы, которую выпаривают досуха. На сухой остаток наносят каплю 2 н. раствора азотной кислоты, а затем прибавляют каплю насыщенного раствора бруцина в 1 н. серной кислоте и каплю 5%-го раствора бромида калия. При наличии ионов висмута сразу же или через несколько минут образуются желто-зеленые кристаллы, собранные в виде сфероидов.

Реакция с хлоридом цезия и иодидом калия.На предметное стекло наносят несколько капель водной фазы, которую выпаривают досуха. На сухой остаток наносят 1—2 капли 3 н. раствора соляной кислоты. Затем с одной стороны жидкости на предметном стекле помещают кристаллик хлорида цезия CsCl, а с другой — кристаллик иодида калия. Нанесенные кристаллики реактивов с помощью тонкой стеклянной палочки соединяют с жидкостью. При наличии ионов висмута в растворе образуются оранжево-красные кристаллы Cs[BiI4], имеющие форму шестиугольников или шестилучевых звездочек.

Реакция с тиомочевиной.В пробирку вносят 0,5 мл водной фазы, к которой прибавляют 0,5 мл насыщенного раствора тиомочевины. В присутствии ионов висмута появляется лимонно-желтая окраска.

Количественное определение

а) Комплексонометрия (трилон Б) в присутствии тиомочевины (или пирокатехинового фиолетового).

б) ФЭК по тиомочевинному комплексу висмута (после выделения в виде ДДТК-висмута и реэкстракции)

 

 

11. Исследование минерализата на наличие соединений мышьяка

Применяемые в химико-токсикологическом анализе методы обнаружения мышьяка основаны на переведении его в мышьяковистый водород и на последующем определении мышьяковистого водорода при помощи реакции Зангер — Блека, реакции с раствором диэтилдитиокарбамата серебра в пиридине и реакции Марша. При всех этих реакциях из соединений мышьяка выделяется летучий и очень ядовитый мышьяковистый водород.

Поэтому при выполнении всех перечисленных выше реакций на мышьяк требуется предосторожность.

Две первые реакции являются предварительными. При отрицательном результате любой из них дальнейшее исследование минерализата на наличие мышьяка не производится. При положительном результате указанных реакций на мышьяк дополнительно выполняют реакцию Марша.

Реакция Зангер — Блека (предварительная) основана на восстановлении соединений мышьяка до мышьяковистого водорода, который затем на фильтровальной бумаге реагирует с хлоридом или бромидом ртути (II). Реакция выполняется в специальном приборе (рис. 6).

Восстановление соединений мышьяка производится водородом в момент его выделения, который получают при взаимодействии металлического цинка с серной кислотой:

Металлический цинк и серная кислота, применяемые для получения водорода, не должны содержать мышьяка. Реакция между металлическим цинком и серной кислотой протекает медленно.

Для ее ускорения применяют так называемый «купрированный» цинк (цинк, поверхность которого покрыта сульфатом меди).

Водород, образовавшийся при взаимодействии серной кислоты и цинка, восстанавливает соединения мышьяка до AsH 3 :

Скорость восстановления соединений трех- и пятивалентного мышьяка (арсенитов и арсенатов) водородом неодинаковая. Арсениты восстанавливаются водородом легче, чем арсенаты. Поэтому вначале производят восстановление арсенатов в арсениты водородом в присутствии солей железа (II) или олова (II), затем арсениты восстанавливаются водородом с образованием мышьяковистого водорода:

Образовавшийся мышьяковистый водород реагирует с хлоридом или бромидом ртути (II), которыми пропитана фильтровальная бумага. При реакции образуется ряд окрашенных соединений, которые располагаются на бумаге в виде желтых или коричневых пятен.

После обработки бумаги слабым раствором иодида калия вся бумага (кроме пятна, содержащего указанные соединения мышьяка) приобретает красноватую окраску, обусловленную переходом хлорида или бромида ртути в иодид этого металла:

При дальнейшей обработке бумаги концентрированным раствором иодида калия бумага обесцвечивается (образуется K 2 [HgI 4 ]), а пятно, содержащее соединения мышьяка AsH 2 (HgCl), AsH(HgCl) 2, As(HgCl) 3, остается желтым или коричневым.

 

Реакции Зангер — Блека мешает сероводород, который может образоваться при взаимодействии водорода с серной кислотой: H 2 SO 4 + 8Н ---> H 2 S + 4Н 2 О.

Реакции Зангер — Блека также мешают соединения, ионы которых восстанавливаются водородом.

Сереводород, выделившийся при взаимодействии водорода с серной кислотой, на фильтровальной бумаге реагирует с хлоридом или бромидом ртути (II). В результате этой реакции образуется черного цвета сульфид ртути, который маскирует окраску пятен, содержащих соединения мышьяка. Для связывания сероводорода применяют вату, пропитанную раствором ацетата свинца:

H 2 S + Pb (CH 3 COO) 2 ---> PbS + 2СН 3 СООН

Выполнение реакции. В колбу аппарата Зангер — Блека вносят 2 мл минерализата, 10 мл 4 н. раствора серной кислоты, 5 мл воды и 1 мл 10 %-го раствора хлорида олова (II) в 50 %-й серной или соляной кислоте. Затем в колбу аппарата вносят 2 г мелких гранул «купрированного» цинка. Колбу аппарата закрывают насадкой, в которую вложена бумага, пропитанная хлоридом или бромидом ртути (II), а ниже вставлен тампон ваты, пропитанный ацетатом свинца. Аппарат оставляют на время, необходимое для образования на бумаге буровато-коричневого пятна. При наличии больших количеств мышьяка в пробе это пятно может появиться через несколько минут. При малых количествах мышьяка в минерализате пятно появляется через 30—45 мин. Если и через 45 мин не появится пятно, то бумагу опускают в 3 %-й водный раствор иодида калия. При этом бумага приобретает красноватую окраску. Затем бумагу опускают в насыщенный раствор иодида калия. При наличии мышьяка в минерализате на бумаге остается желтое или коричневое пятно, а вокруг него исчезает красноватая окраска. Предел обнаружения: 0,1 мкг мышьяка в пробе. Граница обнаружения: 0,01 мг мышьяка в 100 г биологического материала.

Реакция с раствором диэтилдитиокарбамата серебра в пиридине(предварительная).При выполнении этой реакции находящиеся в минерализате соединения мышьяка восстанавливают до мышьяковистого водорода, который собирают в пробирку (приемник), содержащую свежеприготовленный раствор диэтилдитиокарбамата серебра в пиридине. Раствор диэтилдитиокарбамата серебра в пиридине не должен содержать влаги. При наличии мышьяка в минерализате раствор диэтилдитиокарбамата серебра приобретает устойчивую красно-фиолетовую окраску. Химизм этой реакции не выяснен.

Обнаружению мышьяка при помощи этой реакции мешают соединения сурьмы, которые тоже реагируют с указанным реактивом и дают оранжево-красную окраску. Сурьма дает эту реакцию тогда, когда содержание ее в 100 г биологического материала составляет 0,5 мг и выше.

Восстановление соединений мышьяка при этой реакции происходит под влиянием водорода, условия получения которого подробно приведены при описании реакции Зангер — Блека. Реакцию соединений мышьяка с диэтилдитиокарбаматом серебра выполняют в специальном аппарате (см. рис. 7).

Выполнение реакции. В колбу 1 аппарата вместимостью 50 мл вносят 2 г мелких гранул «купрированного» цинка, не содержащего мышьяка. Колбу закрывают притертой пробкой, в которую впаяна цилиндрическая воронка 2 с краном и отводная трубка 3. В цилиндрическую воронку вносят 10 мл минерализата, 5 мл воды, 1 мл 10 %-го раствора хлорида олова (II) в 50 %-м растворе серной или соляной кислоты. Конец отводной трубки опускают в приемник 4, в который наливают 1 мл 0,5%-го раствора диэтилдитикарбамата серебра в пиридине.

После указанной выше подготовки прибора в цилиндрической воронке открывают кран и постепенно (в течение 10—15 мин) вливают ее содержимое в колбу аппарата, содержащую «купрированный» цинк. Как только закончится вытекание жидкости из воронки, ее ополаскивают 5 мл 4 н. раствором серной кислоты, которую тоже вливают в колбу с «купрированным» цинком, и наблюдают изменение окраски раствора диэтилдитиокарбамата серебра в пиридине. При наличии мышьяка в исследуемом минерализате содержимое пробирки (приемника) приобретает розовую или красно-фиолетовую окраску. В зависимости от количества мышьяка в пробирке окраска жидкости появляется через 4—45 мин.

Предел обнаружения: 0,5 мкг мышьяка в 1 мл минерализата. Граница обнаружения: 0,01 мг мышьяка в 100 г биологического материала.

Реакция Маршаоснована на восстановлении соединений мышьяка водородом в момент его выделения и на последующем термическом разложении образовавшегося при этом мышьяковистого водорода:

Мышьяк, образовавшийся при термическом разложении мышьяковистого водорода, откладывается на стенках восстановительной трубки аппарата Марша в виде налета («мышьякового зеркала»).

Реакция Марша является наиболее доказательной из всех реакций, рекомендованных для обнаружения мышьяка в различных объектах. Она не только позволяет обнаружить малые количества мышьяка, но и отличить его от сурьмы.

Реакцию Марша выполняют в специальном аппарате (рис. 8), который состоит из колбы 1, капельной воронки 2, хлор кальциевой трубки 3 и восстановительной трубки 4. Отверстие колбы аппарата Марша имеет пришлифованную поверхность и закрывается пришлифованной пробкой, в которую впаяны капельная воронка и отводная трубка. Восстановительная трубка аппарата Марша изготовляется из тугоплавкого стекла (диаметр 4 мм) или кварца. В нескольких местах этой трубки имеются сужения (диаметр 1,5 мм), а конец ее согнут почти под прямым углом и вытянут в острие. Между отводной и восстановительной трубками помещается хлоркальциевая трубка, заполненная безводным хлоридом кальция, предназначенным для осушивания газов, выходящих из колбы аппарата. Колбу, хлоркальциевую и восстановительную трубки соединяют друг с другом (стык в стык) при помощи кусочков резинового шланга. Собранный таким образом аппарат Марша должен быть герметичным.

Определение мышьяка с помощью реакции Марша выполняют в три этапа.

1. проверяют реактивы на отсутствие в них мышьяка,

2. определяют мышьяк в исследуемом растворе,

3. проверяют подлинность налета, образовавшегося в восстановительной трубке.

 

1. Проверка чистоты реактивов. Прежде чем приступить к обнаружению мышьяка в исследуемом растворе, необходимо убедиться в том, что применяемые для этой цели реактивы («купрированный» цинк и серная кислота) не содержат мышьяка.

С этой целью в колбу аппарата Марша вносят 10 г мелких гранул «купрированного» цинка, колбу закрывают пробкой с вмонтированными капельной воронкой и отводной трубкой. В капельную воронку вносят 30 мл 10 %-го раствора серной кислоты, которую небольшими порциями (по 4—5 мл) приливают к «купрированному» цинку, находящемуся в колбе аппарата Марша. Всегда необходимо оставлять в капельной воронке 8—10 мл раствора серной кислоты, которая препятствует проникновению воздуха извне в аппарат Марша. Попадание воздуха в аппарат Марша через капельную воронку может быть причиной взрыва этого аппарата при нагревании восстановительной трубки или при зажигании выходящих из нее газов.

Через 20—25 мин после начала выделения водорода проверяют полноту вытеснения воздуха водородом из аппарата Марша. Для этого над выходным отверстием восстановительной трубки аппарата держат опрокинутую узкую пробирку. Через 4—5 мин эту пробирку закрывают пальцем и, не переворачивая ее, относят подальше от аппарата Марша. К отверстию пробирки подносят зажженную спичку для воспламенения водорода. Если водород полностью вытеснил воздух из пробирки, то при зажигании водорода не будет ощущаться даже незначительного взрыва (треска). Если воздух из аппарата вытеснен не полностью, через аппарат продолжают пропускать водород до вытеснения им воздуха. Полноту вытеснения воздуха водородом проверяют через каждые 4—5 мин.

После полного удаления воздуха из прибора приступают к проверке наличия мышьяка в реактивах (серной кислоте и «купрированном» цинке).

Для определение наличия мышьяка в реактивах можно применить несколько способов:

А. Зажигают водород, выходящий из отверстия восстановительной трубки аппарата Марша. При наличии мышьяка в реактивах пламя приобретает синеватую окраску. Эту пробу можно производить только тогда, когда из аппарата Марша полностью вытеснен воздух водородом. При наличии хотя бы следов воздуха в аппарате во время зажигания газов, выходящих из трубки, может произойти взрыв.

Б. Восстановительную трубку аппарата Марша перед одним из сужений обвертывают куском металлической сетки (для равномерного нагревания), а находящееся за сеткой сужение трубки обвертывают мокрым фитилем из марли. Один конец фитиля погружают в чашку с водой, а второй — в стакан для стекания жидкости. После этого расширенную часть трубки, обвернутую металлической сеткой, нагревают до слабого красного каления. Если в реактивах содержится мышьяк, то через некоторое время в охлажденной суженной части восстановительной трубки появляется темный налет с металлическим блеском (свободный мышьяк). Обычно проверку наличия металлического налета в трубке производят через час после начала нагревания восстановительной трубки.

Если перечисленные выше опыты будут положительными, то делают вывод, что серная кислота или «купрированный» цинк, применявшиеся для получения водорода, непригодны для дальнейших исследований на наличие мышьяка. Только при отрицательных результатах опытов на наличие мышьяка серную кислоту и «купрированный» цинк можно применять для определения соединений этого элемента в минерализатах и в других объектах.

2. Исследование минерализата. В колбу аппарата Марша вносят 10 г «купрированного» цинка, не содержащего мышьяка, а в капельную воронку наливают 30 мл 4 н. раствора серной кислоты, которая тоже не содержит мышьяка. Из капельной воронки небольшими порциями (по 4—5 мл) несколько раз приливают 4 н. раствор серной кислоты к цинку. Сразу прибавлять большие объемы раствора серной кислоты к цинку не следует, так как это вызовет бурную реакцию, в результате которой часть серной кислоты может восстановиться до сероводорода, который при нагревании восстановительной трубки будет образовывать налет серы. Также следует помнить, что в капельной воронке всегда должен оставаться небольшой объем раствора серной кислоты для предупреждения попадания воздуха в прибор через эту воронку.

Спустя 15—20 мин после начала взаимодействия цинка с серной кислотой проверяют полноту вытеснения воздуха из аппарата Марша водородом, как указано выше. После полного вытеснения воздуха из аппарата Марша в капельную воронку, в которой еще остался небольшой объем раствора серной кислоты, вносят 20 мл минерализата и 2 мл 10%-го раствора хлорида олова (II) в 50 %-м растворе серной кислоты. Содержимое капельной воронки в течение 30—40 мин небольшими порциями вливают в колбу аппарата Марша и равномерно нагревают расширенную часть восстановительной трубки (перед сужением). Одновременно с этим при помощи фитиля из марли охлаждают суженную часть восстановительной трубки, расположенную за местом нагревания. Через 20—30 мин после начала нагревания восстановительной трубки проверяют наличие мышьяка в исследуемой пробе минерализата. С этой целью проводят ряд наблюдений и опытов:

1. Проверяют наличие налета в восстановительной трубке аппарата Марша. Наличие налета, его внешний вид и место расположения в восстановительной трубке может указывать на наличие мышьяка в пробе.

2. Зажигают водород, выходящий из трубки аппарата Марша. При наличии мышьяка в микерализате пламя приобретает синеватую окраску. Зажигание водорода производят только после вытеснения им воздуха из аппарата. Если из аппарата не полностью вытеснен воздух, то может быть взрыв.

3. В указанное пламя вносят холодные фарфоровые крышки или фарфоровые пластинки. Если в минерализате содержатся соединения мышьяка, то на холодных фарфоровых крышках или пластинках отложится буро-сероватый налет.

4. Восстановительную трубку аппарат Марша осторожно поворачивают на 180°, а затем конец ее погружают в 5 %-й раствор нитрата серебра, слабо подщелоченный аммиаком. Если в выходящем из ап