троение атома и происхождение атомных спектров

Атом—дискретная частица вещества размером ~10-8 см, состоящая из положительно заряженного ядра радиусом ~10-12 см и движущихся вокруг него отрицательно заряженных электронов. Скорость электрона столь велика, что в атоме доминируют его волновые свойства. Длина волны движущегося электрона ~10-8 см соизмерима с атомными размерами, по­этому электрон нельзя представить в виде дискретного объекта, как это делается в классической физике, например при движении электронов в газоразрядной трубке. Электрон как бы размазан по атому в виде волны, и можно говорить лишь о вероятности его пребывания в какой-то точке внутри атома или о рас­пределении плотности отрицательного заряда вокруг ядра, ко­торое может быть достаточно сложным.

Области с максимальной плотностью заряда называют эле­ктронными орбиталями или энергетическими уровнями, поскольку каждая орбиталь характеризуется определенной энергией. Энер­гетическое состояние всего атома определяется в основном энергией электронных орбиталей.

Каждый электрон и атом, а следовательно, энергетический уровень описывают набором четырех квантовых чисел: главного, побочного, магнитного и спинового.

Главное квантовое число п характеризует удаленность электрона от ядра и принимает значения 1, 2, 3, .... Чем больше n, тем дальше от ядра находится электронная орбиталь.

Побочное квантовое число l определяет форму орбитали и принимает значения 0, 1, 2, 3, ..., которые обозначают буквами s, р, d, f, .... Движущийся электрон обладает моментом количества движения. При l = 0 момент количества движения равен нулю и электрический заряд размазан по сфере, при l= 1 орбиталь имеет форму гантели.

Магнитное квантовое число т характеризует расположение орбитали в про­странстве и принимает значения от –l до l. При l = 0 магнитное квантовое число равно нулю, при l = 1 оно принимает значения —1, 0, +1, и орбитали, имеющие форму гантели, располагаются вдоль осей прямоугольной системы координат.

Спиновое квантовое число ms, равное -1/2 и +1/2, отражает собственный момент импульса электрона.

По принципу Паули в атоме не может быть двух электронов с одинаковым набором квантовых чисел (хотя бы одно число должно отличаться). В противном случае силы отталкивания «вытолкнули» бы один из них на другую орбиталь. Поэтому многоэлектронный атом имеет сложную структуру: электроны с один­аковыми главными квантовыми числами образуют электронные слои-оболочки (уровни), обозначаемые буквами К, L, М, ... для /1 = 1, 2, 3, ... соответственно, а электроны с одинаковыми побочными квантовыми числами —подоболочки (подуровни) в пределах одной оболочки. Электроны с разными значениями l и т, но с одинаковым п могут оказаться равными по энергии (вырожденными), однако при воздействии какого-либо внешнего поля (электрического, магнитного и др.) вырождение снимается.

 

Происхождение атомных спектров

 

При изменении хотя бы одного квантового числа (главное n, побочное – l; магнитное – m; спиновое - ms) атом получает или отдает энергию. Это может произойти при взаимодействии атома с электромаг­нитным полем, при непосредственном обмене энергией с другими атомами или молекулами, например при столкновениях или при химических реакциях. В отсутствии внешних воздействий атом находится в основном состоянии, т. е. обладает наименьшей энергией. При получении энергии извне скорость электронов увеличивается— атом возбуждается.

  Рис.3. Энергетические пе­реходы в атоме

Атом не может получить или отдать любое количество энергии; энергетичес­кий обмен осуществляется только конеч­ными порциями, в частности квантами электромагнитного излучения (фотона­ми). Иными словами, атом может на­ходиться только в определенных энергетических состояниях, отличающихся друг от друга на конечную величину. На рис. 3 энергетические состояния изображены горизонтальными линиями, из которых нижняя отвечает основ­ному уровню, а остальные — возбужденным; переходы из одного состояния в другое обозначены стрелками.

Один атом за один акт поглощает или испускает только один фотон с определенной энергией (частотой). Вещество состоит из множества одинаковых атомов, способных переходить на разные энергетические уровни, испуская или поглощая фотоны разных частот. Совокупность всех фотонов одной и той же частоты составляет спектральную линию, при поглощении ее называют абсорбционной, при испускании—эмиссионной. Совокуп­ность всех абсорбционных или всех эмиссионных линий называют абсорбционным (поглощение) или эмиссионным(испускание) спек­тром вещества.

Спектр поглощения получают, помещая исследуемое вещество в поле электромагнитного излучения (например, на пути светового потока), а для получения спектра испускания предварительно переводят атомы вещества в возбужденное состояние, что до­стигается подведением какого-либо вида энергии (тепловой, химической, электроразряда, электромагнитного излучения и т. п.); после возбуждения атомы через 10–9–10–7 с возвращаются в основное состояние, испуская фотоны либо теплоту. В последнем случае переход будет безызлучательным; на рис. 3 он изображен волнистой стрелкой.

Частота испускаемого или поглощаемого излучения определя­ется разностью энергии между электронными орбиталями Е:

, где h – постоянная Планка

Абсолютная энергия квантовых состояний неизвестна, поэтому ее отсчитывают от некоторого уровня, условно принятого за нулевой, а именно от энергии ионизации, т. е. полного отрыва электрона от атома.

Энергия атомных орбиталей сильно различается. Так, для возбуждения электрона с ближайшей к ядру орбитали (главное квантовое число n=1) требуется более 6104 кДж моль–1 (испускаемые фотоны имеют частоту рентгеновского излучения), а для возбуждения внешних электронов достаточно 150— 600 кДж моль-1 (излучение ультрафиолетовой и видимой об­ластей). С увеличением главного квантового числа энергия возбуждения Е и частота излучения уменьшаются (рис. 2.).

Наиболее вероятны переходы с первого возбужденного уровня на основной Е0; соответствующие им спектральные линии называют резонансными. Электрон может перейти и в более высокое энергетическое состояние (Е2, Е3 и т. д.). Возвращение его на уровень Е0 может проходить через ряд промежуточных ступеней.

 

 

Рис. 4. Относительное расположение энергетических уров­ней различных квантовых состояний и изменение энергии при электронных переходах

Внешние легко возбудимые электроны называют оптическими, переходы с их участием дают оптический спектр. Энергия возбуждения внешних электронов разных элементов неодинакова. Например, для получения резонансной линии щелочных металлов (переход Е1Е0) требуется сравнительно невысокая энергия (~2эВ, длины волн лежат в видимой области), для неметаллов эта энергия существенно больше (~ 5 эВ, длины волн лежат в УФ-области). Чем больше внешних электронов, тем больше возможностей имеет атом для энергетических переходов, поэтому спектры металлов типа железа состоят из тысяч линий, а спектры щелочных элементов бедны ими.

Атомно-спектроскопические методы анализа.

Все многочисленные энергетические переходы электронов по орбиталям атома могут быть использованы в аналитичес­ких целях. Методы анализа, основанные на изменениях энер­гетического состояния атомов веществ, входят в группу атомно- спектроскопических методов, различающихся по способу получе­ния и регистрации сигнала.

Оптические методы используют энергетические переходы внешних (валентных) электронов, общим для них является необходимость предварительной атомизации (разложение на ато­мы) вещества.