ема: Іонізуюче випромінювання.

План:

1.Виробничі джерела іонізуючого випромінювання, класифікація і особливості їх використання.

2.Типові методи та особливості захисту персоналу від іонізуючого випромінювання у виробничих умовах.

1. Особливу загрозу для здоров’я людей та існуванню природних біоценозів становить забруднення біосфери радіоактивними речовинами, які небезпечні своїм іонізуючим випромінюванням. Розрізняють іонізуюче випромінювання природного і штучного походження. До недавнього часу, до середини ХХ ст., основним джерелом іонізуючого випромінювання були природні джерела – Космос, гірські породи та вулканічна діяльність. У різних регіонах Землі рівень природної радіації сильно різниться, збільшуючись у десятки й сотні разів у районах родовищ уранових руд, радіоактивних сланців тощо. До зон підвищеної радіоактивності в Україні належать Жовті води, Кіровоградська область, Хмельник, Миронівка, Полісся та ін.

Сьогодні основними джерелами радіоактивного забруднення біосфери є джерела антропогенного походження: випробовування ядерної зброї, аварії на атомних електростанціях, підводних човнах та виробництвах радіоактивних матеріалів тощо.

Розрізняють кілька видів іонізуючого випромінювання. Під час радіоактивного розпаду утворюються a(альфа)–, b(бета)– і g(гамма)–частинки. Альфа–випромінювання є потоком позитивного заряджених ядер гелію, бета–випромінювання – потік негативно заряджених швидких електронів і гамма–випромінювання – короткохвильове випромінювання електромагнітної природи. Альфа–випромінювання проникає на відстань від кількох сантиметрів у повітрі й кількох міліметрів – у тканинах, гамма – випромінювання – на відстань до сотень метрів. Радіація — це потік різних видів випромінювання, які утворюються в процесі радіоактивного розпаду і взаємодіють з навколишнім середовищем. Кожний вид радіонуклідів розпадається з певною швидкістю, яка характеризується періодом напіврозпаду — часом, протягом якого число атомів даного радіонукліду зменшується вдвоє.

Для вимірювання ступеня радіаційної небезпеки використовують такі показники: експозиційну дозу, поглинену дозу та еквівалентну дозу, які вимірюються певними одиницями.

Поглинена доза — енергія іонізуючого випромінювання, яка поглинулась тілом (тканинами організму), у перерахунку на одиницю маси. Вимірюється у системі СІ в греях (Гр). Слід відзначити, що дана величина не враховує того, що при однаковій поглиненій дозі альфа–випромінювання більш небезпечним ніж гамма– або бета–випромінювання.

Еквівалентна доза — поглинена доза, що помножена на коефіцієнт, який відображає здатність даного виду випромінювання пошкоджувати тканини організму. Вимірюють у системі СІ в одиницях — зівертах (Зв). Зіверт — одиниця еквівалентної дози у СІ. Відповідає поглиненій дозі в 1 Дж/кг (для рентгенівського, гамма– і бета–випромінювання).

Необхідно враховувати, що одні частини тіла (органи, тканини) більш чутливі, ніж інші: наприклад, при однаковій еквівалентній дозі випромінювання виникнення раку у легенях більш ймовірно, ніж у щитовидній залозі, а опромінення полових залоз особливо небезпечно із–за ризику генетичних пошкоджень. По цій причині дози опромінювання органів і тканин також необхідно враховувати з різними коефіцієнтами. Помножив еквівалентні дози на відповідні коефіцієнти і додавши суми по усіх органах і тканинах, отримуємоефективну еквівалентну дозу, яка відображає сумарний ефект опромінювання для організму. Вимірюється у зівертах.

(Беккерель (Бк) одиниця активності нукліду в радіоактивному джерелі (у системі СІ). 1Бк відповідає одному розпаду у секунду для любого радіонукліда.)

Ці три поняття описують лише індивідуально отримані дози. Склавши індивідуальні ефективні еквівалентні дози, які отримані групою людей, отримують колективну ефективну еквівалентну дозу, яка вимірюється у людино–зівертах (люд–ЗВ, рос. варіант чел–Зв).

Найбільш поширені позасистемні одиниці і їх зв’язок із системою СІ: кюри (Ки, Си), одиниця активності ізотопу: 1Ки=3,700 х 1010 Бк; рад — одиниця поглиненої дози випромінювання: 1 рад = 0,01 Гр; бєр — одиниця еквівалентної дози: 1 бєр = 0,01 Зв.

Рентген (Р) позасистемна одиниця експозиційної дози рентгенівського і гамма–випромінювання. Експозиційна доза характеризує іонізацію у повітрі у полі джерела рентгенівського або гамма–випромінювання. Експозиційна доза дорівнює 1 Р, якщо спряжена з рентгенівським або гамма–випромінюванням корпускулярна емісія на 0,001293 г повітря утворює іони, які несуть заряд в одну електростатичну одиницю кількості електрику кожного знаку.

Бєр, біологічний еквівалент рентгена — доза любого виду іонізуючого випромінювання, яка має таку ж біологічну дію, що і доза рентгенівських або гамма-променів у 1Р.

Рівень вмісту радіоактивних ізотопів у організмі залежить від їх концентрації в навколишньому середовищі. Припустимий вміст радіоактивних речовин в організмі (тобто така кількість, за наявності якої утворюється доза на критичний орган, що перевищує ГДД) залежить від ступеня безпеки радіоактивних елементів у випадку потрапляння всередину і визначається їх радіотоксичністю.

Радіотоксичність — це властивість радіоактивних ізотопів спричинювати патологічні зміни у випадку потрапляння їх до організму. Радіотоксичність ізотопів залежить від низки моментів, основними з яких є: 1) вид радіоактивного перетворення; 2) середня енергія одного акту розпаду; 3) схема радіоактивного розпаду); 4) шляхи надходження радіоактивних речовин до організму; 5) розподіл в органах та системах; 6) час перебування радіонукліда в організмі; 7) тривалість надходження радіоактивних речовин до організму людини.

Основними шляхами надходження радіоактивних речовин до людського організму є: дихальні шляхи, кишково–шлунковий тракт і шкіра. Найнебезпечнішим вважається потрапляння радіоактивних ізотопів через верхні дихальні шляхи, звідки вони попадають у шлунок і в легені. Через неушкоджену шкіру резорбція в 200–300 разів менша, ніж через травний канал, і не відіграє суттєвої ролі, за винятком ізотопу водню — тритію, який легко потрапляє через шкіру.

Додаткове внутрішнє опромінення можливе у випадку надходження радіоактивних речовин під час споживання забруднених харчових продуктів.

Іонізуюче випромінювання має високу біологічну активність. Залежно від дози опромінення та низки інших умов воно здатне негативно впливати на людину вплоть до її загибелі. Біологічна дія радіоактивного випромінювання полягає в ушкодженні; іонізації або збудженні молекул (у тому числі ДНК), загибелі клітин, виникненні мутацій.

Відзначають такі ефекти впливу іонізуючою радіації на організм людини: соматичні (гостра променева хвороба, хронічна променева хвороба, місцеві променеві ураження); сомато–стохатичні (злоякісні новоутворення, порушення розвитку плода, скорочення тривалості життя); генетичні (генні мутації, хромосомні аберації).

Доза опромінення до 0,25 Гр[1] (25 рад) звичайно не спричинює значних відхилень у загальному статусі та крові. Доза 0,25–0,5 ГР (25–50 рад) може призвести до окремих відхилень у складі крові. Доза 0,5–1 Гр (50–100 рад) зумовлює нерізко виражені зміни в картині крові, порушення функції нервової системи. Пороговою дозою для гострого променевого ураження прийнято вважати одноразове опромінення дозою 1 Гр (100 рад). У випадку подальшого опромінення дозою 150 рад і більше ймовірною є можливість виникнення хронічної променевої хвороби, яка проявляється вегетосудинними порушеннями, функціональними змінами центральної нервової системи, токсичним ураженням печінки, зменшенням числа лейкоцитів до 2 тис/мм3 у крові, переродженням нейтрофільних гранулоцитів тощо.

Серозну загрозу для здоров’я людини, яка перенесла гостру чи хронічну променеву хворобу, становлять віддалені наслідки променевого ураження. Вони можуть проявитися через 10–20 років після опромінення. До основних віддалених наслідків відносяться, зокрема, захворювання, що пов’язані зі змінами генетичного апарату (пошкоджуються хромосомний апарат, порушуються механізми ділення (мітозу), відбувається блокування процесів відновлення та диференціювання клітин тощо), злоякісні пухлини, захворювання крові, скорочення тривалості життя.

Згідно з рекомендаціями Міністерства по контролю за радіаційним забрудненням (1987 р. ), для запобігання можливим вадам розвитку доза опромінення на все тіло не повинна перевищувати 50 Р, а на орган чи тканину — 500 Р. Іонізуюче випромінювання, яке діє на гонади в дозах 100–200 Р, впливає на ооцити і зумовлює тимчасову безплідність, а в дозі 400 Р — стійку безплідність.

Що стосується небезпеки генетичного виродження людства (зокрема, на сучасному етапі), то можна сказати, що ризик народження хворої дитини через опромінення чи інший шкідливий вплив саме внаслідок мутації (природні або викликані штучно зміни спадкових особливостей організмів, які змінюють їх морфологічні і (або) фізіолого–поведінкові ознаки) не такий вже й великий. За даними експертів ООН (1977 р.), генетичні хвороби внаслідок опромінення в дозі 1 рад популяції в 1 млн новонароджених виникають у першому поколінні в 63 випадках, що складає 0,06% від загального числа генетичних хвороб у популяції. Однак для нащадків хворої дитини ризик успадкувати захворювання вже становить 50%.

Пошкоджуюча дія радіації на плід людини (тератогенний ефект) можлива, якщо дози опромінення перевищують 20–25 рад. Водночас, генетично значною, тобто такою, що здатна викликати патологічні зміни у хромосомному апараті плода, вважають дозу 10 рад.

Слід пам’ятати, що загрожу для здоров’я людини становить і ще не вивчений механізм поєднання зовнішнього і внутрішнього опромінення (повітря, їжа), зовсім не досліджене і явище синергізму— взаємодії радіації з хімічними речовинами — свинцем, пестицидами тощо.

Профілактика радіоактивного забруднення харчових продуктів

Після аварії на ЧАЕС сільськогосподарські угіддя зазнали значного радіоактивного забруднення, особливо в Київській, Житомирській, Чернігівській та Рівненській областях. Продукція, яка вирощується на цих угіддях, забруднена радіонуклідами. Тому для використання її в харчовому раціоні необхідно здійснювати певні профілактичні заходи. Перед кулінарною та технологічною обробкою харчової сировини її очищають механічними способами від забруднення землею, яка містить радіонукліди. Картоплю, овочі, фрукти та ягоди ретельно миють теплою проточною водою. Гриби і ягоди бажано вимочувати впродовж 2–3 год. Це дає змогу зменшити радіоактивність на 80% переважно за рахунок видалення.

У процесі варіння харчової сировини значна частина радіонуклідного забруднення екстрагується у відвар. З грибів, щавлю, гороху, капусти та буряків через 5–10 хв. Варіння до 60–85% 137Cs переходить у відвар, який зливають і видаляють. Гриби варто відварити двічі підряд упродовж 10 хв щоразу, видаляючи перший і другий відвари. М’ясо і рибу, виловлену в місцевий водоймах, вимочують у воді впродовж 1,5 год, а потім ріжуть дрібними шматками і варять у чистій воді протягом 10 хв., відливають відвар, знову заливають продукт чистою водою і готують страву.

Продукти, забруднені радіонуклідами, недоцільно смажити, їх краще тушкувати. При видалені з риби кісток і плавників вміст 137Cs зменшується на 40%. Попереднє видалення кісток з м’яса сприяє майже повному видаленню радіонуклідів.

Якщо варити у несолоній воді, перехід радіонуклідів у бульйон зменшується на 40%. Якщо картоплю варити неочищеною, в ній залишається менше радіонуклідів. Близько половини 137Cs видаляється із засолених грибів, овочів, фруктів. При переробці зерна на борошно та крупи вміст 90 Sr зменшується в них на 60–90%. При приготуванні з молока сиру в продукті залишається 10–29% 137Cs, у масло й сметану переходить відповідно 1,5 і 9%.

Харчування в умовах радіаційного забруднення.

З метою зменшення шкідливого впливу радіонуклідів на організм людини і запобігання його негативним наслідкам потрібно обмежити їх надходження в організм із навколишнього середовища. Цього можна досягти як за рахунок технологічної та кулінарної обробки, так і за рахунок застосування радіопротекторів.

Радіозахисні властивості мають білки, полі ненасичені жирні кислоти, деякі амінокислоти, тіамін, рибофлавін, складні не крохмальні вуглеводи, вітамін Р, каротин та деякі мінеральні речовини.

В умовах радіаційного забруднення особливо бажаними є сірковмісні амінокислоти – цистеїн і метіонін. Вони містяться в значних кількостях в білку молока та яєць, у бобових та вівсяній крупі, домашньому сирі, курячому м’ясі й соняшниковому насінні, а також капусті, петрушці, цибулі.

До раціону повинні входити й жири, переважно рослинні, що містять полі ненасичені жирні кислоти й антиоксиданти. Слід збільшити кількість не крохмальних вуглеводів – харчових волокон полісахаридів, пектинових речовин і зменшити споживання цукру. Оптимальна доза пектину становить 2–4 г (для дітей 1–2 г) на добу.

Вміст пектину в 100 г деяких овочів і фруктів, г

Абрикоси – 0,7 Аґрус – 0,7 Малиновий сік – 2

Вишні – 0,4 Персики – 0,7 Зелений горошок – 2,5

Полуниці – 0,7 Сливи – 0,9 Столовий буряк – 1,0

Смородина – 1,1 яблука – 1,2 Томати – 0,3

Сік шовковиці – 2,2 Виноград – 0,6 Картопля – 0,5

Потреба дорослої людини в аскорбіновій кислоті становить 70–100 мг на добу. Вона захищає від негативного впливу радіонуклідів стінки судин, капілярів та мембрани клітин. Овочі та фрукти забезпечують організм аскорбіновою кислотою, каротином, біофлавоноїдами, пектиновими речовинами та органічними кислотами. Багато аскорбінової кислоти і калію в картоплі, якої потрібно споживати не менше 350–400 г на добу. Серед фруктів – чорна смородина, лимони, шипшина. Серед овочів – кріп, який у тричі багатший на аскорбінову кислоту за лимони.

Вітамін А (каротин), що міститься у моркві, кукурудзі, пастернаку, шпинаті, капусті та гарбузі має протипухлинні та радіопротекторну дії

Цинк, що міститься в овочах і фруктах, блокує поглинання організмом радіонукліда 65 Zn

Вітаміни групи В потрібні у кількості 17–25 мг на добу. Вони містяться в молоці, чорному хлібі, бобових, яйцях, печінці., а також у горіхах, гарбузовому та соняшниковому насінні. Характерною є радіозахисна властивість горіхів і насіння, які мають низький вміст радіонуклідів та хімічних токсинів.

Добова потреба у такому антиоксиданті як токоферол (вітамін Е) становить 20 мг. Цього вітаміну багато у зародках злаків (2,5 г на 100 г) та висівковому хлібі, а також міститься він у горіхах та насінні (соняшниковому й гарбузовому).

Для запобігання шкідливого впливу радіоактивних 137Cs та 90 Sr необхідно насичувати організм солями калію та кальцію. Багато калію міститься в овочах (огірки) і фруктах, кальцію – в домашньому сирі і молоці. Добова потреба в кальції для дорослої людини становить 800 мг, для дітей 1200 мг. Цю потребу можуть задовольнити 100 г сиру або 0,5 л молока.

Особливе значення в умовах радіоактивного забруднення в харчовому раціоні мають кровотворні мікроелементи – залізо, мідь, манган та кобальт. Добова потреба в мангані становить 5 мг, міді – 2 мг і заліза – 14 мг. Багато цих мікроелементів міститься в м’ясних продуктах, печінці, крові, яблуках та вівсяній крупі. Нестача такого елемента як йод спричинює гіперплазії щитоподібної залози. Поповнити дефіцит йоду можна за рахунок вживання йодованої солі, а також морській рибі, водоростях.

До раціону слід включати кавуни й дині, багаті на органічні кислоти, пектинові речовини, каротин й калій.

Корисним продуктом є бобові, особливо квасоля, що містить повноцінний білок, метіонін, цистин, полі ненасичені жирні кислоти та магній. Магній сприяє оптимальному засвоєнню кальцію і перешкоджає засвоєнню радіоактивного 90 Sr. Щодня потрібно споживати 150–200 г яблук, абрикос, персиків, слив та вишень.

З напоїв до щоденного раціону варто включати чай ы за можливості – червоне вино. Таніни, катехіни й епікатехіни, що містяться у чаї, зміцнюють капіляри і знижують проникність їхніх стінок. Значна кількість флавоноїдів, що містяться в натуральному червоному вині, має радіопротекторну дію на організм.

Самостійна робота № 11

Тема: Санітарно-гігієнічні вимоги до планування і розміщення виробничих і допоміжних приміщень.

План:

1.Класи шкідливості підприємств за санітарними нормами.

2.Санітарно-захисні зони підприємств.

3.Вимоги до розташування промислового майданчика підприємства, до виробничих та допоміжних приміщень.

4. Енерго та водопостачання, Каналізація, транспортні комунікації.

5.Вимоги охорони праці до розташування виробничого і офісного обладнання організація робочих місць.

1. Створення здорових та безпечних умов праці починається з правильного вибору майданчика для розміщення підприємства та раціонального розташування на ньому виробничих, допоміжних та інших будівель і споруд.

Вибираючи майданчик для будівництва підприємства, треба враховувати: аерокліматичну характеристику та рельєф місцевості, умови туманоутворення та розсіювання в атмосфері промислових викидів. Не можна розміщувати підприємства поблизу джерел водопостачання; на ділянках, забруднених органічними та радіоактивними відходами; в місцях можливих підтоплень тощо. Слід зазначити, що при виборі місця розміщення підприємства необхідно врахувати вплив вже існуючих джерел викидів та створюваного ними тла забруднення.

Вирішуючи питання зонування (умовного поділу території за функціональним використанням) великого значення слід надавати переважаючому напрямку вітрів та рельєфу місцевості. Як правило, виробничу зону розташовують з підвітряного боку відносно підсобної та інших зон. Окремі будівлі та споруди розташовуються на майданчику таким чином, щоб у місцях організованого повітрозабору системами вентиляції (кондиціонування повітря) вміст шкідливих речовин у зовнішньому повітрі не перевищував 30% ГДК для повітря робочої зони виробництв. При розташуванні будівель відносно сторін світу необхідно прагнути до створення сприятливих умов для природного освітлення. Відстань між будівлями повинна бути не менше найбільшої висоти однієї з протилежних будівель (щоб вони не затіняли одна одну).

Виробничі будівлі та споруди, як правило, розташовують за ходом виробничого процесу. При цьому їх слід групувати з урахуванням спільності санітарних та протипожежних вимог, а також з урахуванням споживання електроенергії, руху транспортних та людських потоків.

Згідно з Державними санітарними правилами планування та забудови населених пунктів підприємства, їх окремі будівлі та споруди з технологічними процесами, що є джерелами забруднення навколишнього середовища хімічними, фізичними чи біологічними факторами, при неможливості створення безвідходних технологій повинні відокремлюватись від житлової забудови санітарно-захисними зонами (СЗЗ). Розмір санітарно-захисної зони визначають безпосередньо від джерел забруднення атмосферного повітря до межі житлової забудови. Джерелами забруднення повітря є: організовані (зосереджені) викиди через труби і шахти; розосереджені — через ліхтарі промислових споруд; неорганізовані — відкриті склади та підвали, місця завантаження, місця для збереження промислових відходів.

Для підприємств, що є джерелами забруднення атмосфери промисловими викидами (залежно від потужності, умов здійснення технологічного процесу, кількісного та якісного складу шкідливих виділень тощо), встановлені такі розміри санітарно-захисних зон відповідно до класу шкідливості підприємств: І клас — 1000 м, II клас — 500 м, III клас — 300 м, IV клас — 100 м, V клас — 50 м.

До І, II та НІ класу відносяться в основному підприємства хімічної та металургійної промисловості, деякі підприємства по видобутку руди, виробництву будівельних матеріалів.

До IV класу, поряд з підприємствами хімічної та металургійної промисловості, відносяться підприємства металооброблювальної промисловості з чавунним (в кількості до 10000 тон/рік) та кольоровим (в кількості до 100 тон/рік) литвом, ряд підприємств по виробництву будівельних матеріалів, обробці деревини, багато підприємств текстильної, легкої, харчової промисловості.

До V класу, крім деяких виробництв хімічної та металургійної промисловості, відносяться підприємства металооброблювальної промисловості з термічною обробкою без ливарних процесів, великі друкарні, меблеві фабрики.

Санітарно-захисні зони повинні бути озеленені, адже саме тоді вони повною мірою можуть виконувати роль захисних бар'єрів від виробничого пилу, газів, шуму.

На зовнішній межі санітарно-захисної зони зверненої до житлової забудови, концентрації та рівні шкідливих факторів не повинні перевищувати їх гігієнічні нормативи (ГДК, ГДР), на межі курортно-рекреаційної зони — 0,8 від значення нормативу.

Велике значення з санітарно-гігієнічної точки зору має благоустрій території, що вимагає озеленення, обладнання тротуарів, майданчиків для відпочинку, занять спортом та ін. Озеленені ділянки повинні складати не менше 10 . 15% загальної площі підприємства.

 

Для збирання та зберігання виробничих відходів потрібно відвести спеціальні ділянки з огородженням та зручним під'їздом.

Основні вимоги до будівель виробничого призначення викладені в СНиП 2.09.02-85.

При плануванні виробничих приміщень необхідно враховувати санітарну характеристику виробничих процесів, дотримуватись норм корисної площі для працюючих, а також нормативів площ для розташування устаткування і необхідної ширини проходів, що забезпечують безпечну роботу та зручне обслуговування устаткування.

Об'єм виробничих приміщень на одного працівника згідно з санітарними нормами повинен складати не менше 15 м3, а площа приміщень — не менше 4,5 м2.

Якщо в одній будові необхідно розмістити виробничі приміщення, до яких з точки зору промислової санітарії та пожежної профілактики висуваються різні вимоги, то необхідно їх групувати таким чином, щоб вони були ізольованими один від одного. Цехи, відділення та дільниці зі значними шкідливими виділеннями, надлишком тепла та пожежонебезпечні необхідно розташовувати біля зовнішніх стін будівлі і, якщо допустимо за умовами технологічного процесу та потоковістю виробництва — на верхніх поверхах багатоповерхової будівлі. Не можна розташовувати нешкідливі цехи та дільниці (наприклад, механоскладальні, інструментальні, ЕОМ тощо), а також конторські приміщення над шкідливими, оскільки при відкриванні вікон гази та пари можуть проникати в ці приміщення.

Приміщення, де розташовані електрощитове, вентиляційне, компресорне та інші види обладнання підвищеної небезпеки повинні бути постійно зачиненими на ключ, з тим, щоб в них не потрапили сторонні працівники.

З метою запобігання травматизму у виробничих приміщеннях необхідно застосовувати попереджувальне пофарбування будівельних конструкцій та знаки безпеки (ТОСТ 12.4.026-76 „Цвета сигнальньїе й знаки безопасности"). Наприклад, жовтим кольором (або із чорними смугами) фарбують низько розташовані над проходами конструкції, звуження проїздів, малопомітні сходинки, виступи та перепади в площині підлоги.

Ширина основних проходів всередині цехів та дільниць повинна бути не менше 1,5 м, а ширина проїздів — 2,5 м.

Двері та ворота, що ведуть безпосередньо на двір, необхідно обладнати тамбурами або повітряними (тепловими) завісами.

Важливе значення для здорових та безпечних умов праці мають раціональне розташування основного та допоміжного устаткування, виробничих меблів, а також правильна організація робочих місць. Порядок розташування устаткування і відстань між машинами визначаються їхніми розмірами, технологічними вимогами і вимогами техніки безпеки. Однак, у всіх випадках, до устаткування, що має електропривід, повинен бути вільний підхід з усіх сторін шириною не менше 1 м зі сторони робочої зони і 0,6 м — зі сторони неробочої зони. Виробничі меблі (шафи, стелажі, столи тощо) можна ставити впритул до конструктивних елементів будівлі — стін, колон.

Для обробки та захисту внутрішніх поверхонь конструкцій приміщень від дії шкідливих та агресивних речовин (наприклад, кислот, лугів, свинцю) та вологи використовують керамічну плитку, кислотостійку штукатурку, олійну фарбу, які перешкоджають сорбції цих речовин та допускають миття поверхонь.

Висота виробничих приміщень має бути не менше 3,2 м, а для приміщень енергетичного та складського господарства — 3 м. Відстань від підлоги до конструктивних елементів перекриття — 2,6 м. Галереї, містки, сходи і майданчики повинні бути завширшки не менше 1 м і загороджені поруччями висотою 1 м і внизу повинні мати бортики висотою 0,2 м.

Всі майданчики, які розташовані на висоті понад 260 мм від підлоги повинні мати поруччя. Санітарні металеві сходи для обслуговування обладнання встановлюються під кутом, що не перевищує 45° з відстанню між сходинками 230—260 мм і шириною сходів 250—300 мм. Для обслуговування обладнання, котре відвідується 1—2 рази на зміну і яке розташоване на майданчиках з різницею у відмітках не більше 3 м, допускається кут нахилу сходів 60°.

 

 

Самостійна робота № 12