Несовместимость ньютоновской теории тяготения и специальной теории относительности

Главной особенностью специальной теории относительности является существование абсолютного барьера для скорости, устанавливаемого скоростью света. Важно понимать, что этот предел относится не только к материальным телам, но также к сигналам и воздействиям любого рода. Не существует способа передать информацию или возмущение из одного места в другое со скоростью, превышающей скорость света. Конечно, в природе есть масса способов распространения возмущений со скоростью, меньшей скорости света. Например, наша речь и другие звуки передаются с помощью колебаний, распространяющихся в воздухе со скоростью около 330 м/с, что ничтожно мало по сравнению со скоростью света, равной 300 000 км/с. Эта разница скоростей становится очевидной, если наблюдать за бейсбольным матчем с мест, расположенных далеко от поля. Когда подающий бьет по мячу, звук достигает вас спустя несколько мгновений после того, как вы увидели удар. Похожие вещи происходят во время грозы. Хотя вспышка молнии и удар грома происходят одновременно, мы видим молнию раньше, чем слышим гром. Это снова является отражением значительной разницы в скоростях света и звука. Успех специальной теории относительности говорит нам, что обратная ситуация, когда какой-нибудь сигнал достигнет нас раньше, чем свет, излученный одновременно с этим сигналом, попросту невозможна. Ничто в мире не может обогнать фотоны.

Здесь и лежит камень преткновения. В теории тяготения Ньютона одно тело притягивает другое с силой, которая зависит только от масс этих тел и расстояния между ними. Эта сила никак не зависит от того, насколько долго тела находились рядом друг с другом. Это означает, что если их массы или расстояния между ними изменятся, то тела, согласно Ньютону, немедленно почувствуют изменение взаимного гравитационного притяжения. Например, ньютоновская теория тяго-


Глава 3. 06 искривлениях Рё волнистой СЂСЏР±РёВВВВВВВВВВВВВВВВВВВВВВВВВВВВВВВВВВВВВВВ 45

тения утверждает, что если Солнце внезапно взорвется, то Земля, расположенная на расстоянии примерно 150 млн км от него, мгновенно сойдет со своей обычной эллиптической орбиты. Несмотря на то, что вспышка света от взрыва дойдет от Солнца до Земли только через восемь минут, в теории Ньютона сведения о том, что Солнце взорвалось, будут переданы на Землю мгновенно, посредством внезапного изменения силы тяготения, управляющей движением планеты.

Этот вывод находится в прямом противоречии со специальной теорией относительности, поскольку последняя уверяет, что никакая информация не может быть передана со скоростью, превышающей скорость света. Мгновенное распространение тяготения в максимально возможной степени нарушает это принцип.

Таким образом, в начале XX в. Эйнштейн осознал, что невероятно успешная теория тяготения Ньютона находится в противоречии со специальной теорией относительности. Уверенный в истинности специальной теории относительности, Эйнштейн, невзирая на огромное количество экспериментальных данных, подтверждающих теорию Ньютона, стал работать над новой теорией гравитации, которая была бы совместима со специальной теорией относительности. Это, в конечном счете, привело его к открытию общей теории относительности, в которой характер пространства и времени вновь претерпел поразительные изменения.

Самая счастливая идея Эйнштейна

Еще до открытия специальной теории относительности был ясен один существенный недостаток ньютоновской теории тяготения. Хотя теория чрезвычайно точно предсказывала движение тел под действием силы тяготения, она ничего не говорила о том, что представляет собой тяготение. Иными словами, как получается, что два тела, разделенные расстоянием в сотни миллионов километров и более, тем не менее, оказывают влияние на движение друг друга? Каким образом тяготение выполняет свою миссию? Сам Ньютон вполне осознавал существование этой проблемы. По его собственным словам «...непостижимо, чтобы неодушевленная, грубая материя могла без посредства чего-либо нематериального действовать и влиять на другую материю без взаимного соприкосновения, как это должно бы происходить, если бы тяготение в смысле Эпикура было существенным и врожденным в материи. Предполагать, что тяготение является существенным, неразрывным и врожденным свойством материи, так что тело может действовать на другое на любом расстоянии в пустом пространстве, без посредства чего-либо передавая действие и силу, — это, по-моему, такой абсурд, который немыслим ни для кого, умеющего достаточно разбираться в философских предметах. Тяготение должно вызываться агентом, постоянно действующим по определенными законам. Является ли, однако, этот агент материальным или нематериальным, решать это я предоставил моим читателям»').

Это говорит о том, что Ньютон принимал существование тяготения, и разрабатывал уравнения, которые с высокой точностью описывают его действие, но никогда не предлагал никакого механизма, объясняющего, как оно работает. Он оставил миру «руководство пользователя» по гравитации с описанием того, как ее «использовать». Физики, астрономы и инженеры успешно применяли эти инструкции для прокладки курса ракет к Луне, Марсу и другим планетам Солнечной систем, для прогноза солнечных и лунных затмений, для предсказания движения комет и т. п. Но внутренний механизм — содержимое «черного ящика» гравитации — Ньютон оставил под покровом тайны. Когда вы пользуетесь плеером для компакт--дисков или персональным компьютером, вы обычно находитесь в таком же состоянии неведения об их внутреннем устройстве. Коль скоро вы знаете, как обращаться с исправным устройством, ни вам, ни кому-либо другому не требуется знать, каким образом оно выполняет ваши задания. Но когда ваш плеер или персональный компьютер выходит из строя, возможность его починки решающим образом зависит от знания его внутреннего устройства. Аналогично Эйнштейн


46ВВВВВВВВВВВВВВВВВВВВВВВВВВ Часть II. Дилемма пространства, времени Рё квантов

осознал, что, несмотря на сотни лет экспериментального подтверждения ньютоновской теории, специальная теория относительности обнаружила едва уловимую внутреннюю «неисправность», а устранение этой неисправности потребует решить вопрос об истинном механизме тяготения.

В 1907 г., обдумывая эти вопросы за своим столом в патентном бюро швейцарского города Берна, Эйнштейн сумел нащупать центральную идею, которая, после ряда успехов и неудач, в конечном счете привела его к радикально обновленной теории тяготения. Предложенный Эйнштейном подход не просто восполнил пробелы в ньютоновской теории, но совершенно изменил наши представления о тяготении, и, что очень важно, оказался полностью совместимым со специальной теорией относительности.

Подход, предложенный Эйнштейном, имеет отношение к вопросу, который беспокоил нас на всем протяжении главы 2. Там мы интересовались, как выглядит мир для двух наблюдателей, двигающихся относительно друг друга с постоянной скоростью. Тщательно сравнивая точки зрения этих двух наблюдателей, мы получили ряд удивительных выводов о сущности пространства и времени. А что можно сказать о наблюдателях, находящихся в состоянии ускоренного движения? Точки зрения этих наблюдателей труднее поддаются анализу, чем в случае наблюдателей, степенно движущихся с постоянной скоростью. Тем не менее, можно поставить вопрос, существует ли способ разрешить эти трудности и осмыслить ускоренное движение в соответствие с новым уровнем понимания пространства и времени.

«Самая счастливая идея» Эйнштейна объясняет, как сделать это. Чтобы понять ее, вообразим, что сейчас 2050 г. и вы являетесь главным экспертом ФБРпо взрывчатым веществам. К вам обращаются с отчаянной мольбой срочно исследовать объект, который, по-видимому, является бомбой изощренной конструкции, заложенной в самом центре Вашингтона. Поспешив на место действия и осмотрев бомбу, вы видите, что сбылись ваши самые худшие предчувствия — бомба является атомной и имеет такую мощность, что даже если поместить ее глубоко под землю или на дно океана, последствия от взрыва будут опустошительными. После внимательного изучения детонирующего устройства вы видите, что обезвредить его невозможно и, более того, оно содержит защиту нового типа. Бомба смонтирована на весах. Как только показания весов изменятся более чем на 50 % от того значения, которое они показывают сейчас, бомба взорвется. Изучив часовой механизм, вы видите, что в вашем распоряжении осталась всего неделя. От ваших действий зависит судьба миллионов людей — что же делать?

Итак, смирившись СЃ тем, что РЅР° земле Рё РїРѕРґ землей нет безопасного места, РіРґРµ можно было Р±С‹ взорвать Р±РѕРјР±Сѓ, РІС‹ приходите Рє выводу, что остается только РѕРґРёРЅ выход: необходимо запустить ее РІ РєРѕСЃРјРѕСЃ, РіРґРµ взрыв РЅРµ причинит ущерба РЅРёРєРѕРјСѓ. Р’С‹ высказываете эту идею РЅР° совещании вашей команды РІ ФБР, Рё почти немедленно молодой сотрудник перечеркивает этот план. «В вашем предложении есть серьезный РёР·СЉСЏРЅ, — РіРѕРІРѕСЂРёС‚ ваш ассистент Исаак. — РљРѕРіРґР° устройство будет удаляться РѕС‚ Земли, его вес начнет уменьшаться, поскольку гравитационное притяжение СЃРѕ стороны Земли будет ослабевать. Это означает, что показания весов внутри устройства уменьшатся, что приведет Рє детонации задолго РґРѕ того, как Р±РѕРјР±Р° удалится РЅР° безопасное расстояние». Прежде чем РІС‹ успеваете полностью осмыслить это возражение, РІ разговор вмешивается РґСЂСѓРіРѕР№ молодой человек. «На самом деле здесь есть еще РѕРґРЅР° проблема, которую нам следует обсудить, — заявляет ваш РґСЂСѓРіРѕР№ ассистент Альберт. — РћРЅР° столь же важна, как та, РЅР° которую указал Исаак, РЅРѕ является более тонкой, поэтому следите внимательно Р·Р° РјРѕРёРј объяснением». Желая взять минуту РЅР° размышление, чтобы обдумать возражение Исаака, РІС‹ пытаетесь отмахнуться РѕС‚ Альберта, РЅРѕ если СѓР¶ РѕРЅ начал говорить, остановить его невозможно.

«Для того чтобы запустить устройство в открытый космос, мы должны поместить его на ракету. Чтобы улететь в космическое пространство, ракета должна ускориться, поэтому показания на весах увеличатся, и взрыв снова произойдет преждевременно.


Глава 3. РћР± искривлениях Рё волнистой СЂСЏР±РёВВВВВВВВВВВВВВВВВВВВВВВВВВВВВВВВВВВВВВВ 47

Основание бомбы, которое стоит на весах, будет давить на весы сильнее, чем когда оно находится в покое. Это похоже на то, как ваше тело прижимается к сиденью автомобиля при разгоне. Бомба „вдавится" в весы точно так же, как ваша спина в спинку сидения. Под давлением показания весов увеличиваются, и это приведет к взрыву, как только увеличение превысит 50 %».

Вы благодарите Альберта за его комментарий, но мысленно откладываете его в сторону, поскольку по своим последствиям оно совпадает с замечанием Исаака, и безрадостно констатируете, что для того, чтобы убить идею, достаточно одного выстрела, и наблюдение Исаака, которое, несомненно, является правильным, уже сделало это. Без особой надежды вы спрашиваете, есть ли еще идеи. В этот момент Альберта посещает озарение. «Хотя, взвесив все еще раз, — продолжает он, — ваша идея вовсе не кажется мне безнадежной. Замечание Исаака о том, что сила тяжести уменьшается при подъеме в космическое пространство, означает, что показания весов будут уменьшаться. Мое наблюдение, состоящее в том, что ускорение ракеты при движении вверх заставит устройство давить на весы сильнее, означает, что показания весов будут увеличиваться. В итоге это означает, что в каждый момент следует поддерживать ускорение на таком уровне, чтобы эти два эффекта нейтрализовали друг друга! А именно, на ранних стадиях подъема, пока ракета ощущает полную мощь земного тяготения, она может ускоряться не очень сильно, так, чтобы оставаться в границах пятидесяти процентного допуска. По мере того, как ракета будет удаляться все дальше от Земли, а сила ее притяжения будет ослабевать, мы должны увеличить ускорение для того, чтобы скомпенсировать это ослабление. Увеличение показаний весов из-за ускорения может быть сделано в точности равным уменьшению показаний из--за ослабления гравитационного притяжения. Это означает, что в действительности можно сделать так, чтобы показания весов совсем не менялись!»

Предложение Альберта начинает постепенно до вас доходить. «Иными словами — говорите вы, — ускорение может быть заменой тяготения. Мы можем имитировать действие силы тяжести правильно подобранным ускоренным движением».

«Совершенно верно», — подтверждает Альберт.

«Итак, — продолжаете вы, — мы можем запустить бомбу в космос и, соответствующим образом регулируя ускорение ракеты, гарантировать, что показания весов не изменятся и бомба не взорвется до тех пор, пока не удалится на безопасное расстояние от Земли». Таким образом, если вы заставите гравитацию и ускорение играть друг против друга, используя для этого возможности ракетной техники XXI в., то сможете избежать катастрофы.

Осознание глубокой связи между гравитацией и ускоренным движением представляет собой главное озарение, снизошедшее на Эйнштейна в один счастливый день в патентном бюро Берна. Хотя эксперимент с бомбой уже высветил суть этой идеи, она заслуживает того, чтобы перефразировать ее в терминах, использованных в главе 2. Для этого вспомним, что если мы находимся в закрытом вагоне, не имеющем окон и не испытывающем ускорения, то не существует способа, с помощью которого мы могли бы определить скорость своего движения. Купе внутри будет продолжать выглядеть совершенно одинаково, и любые эксперименты дадут вам тождественные результаты независимо от скорости движения. Более того, не имея внешних ориентиров для сравнения, вы даже не сможете определить, движетесь ли вы вообще. С другой стороны, если вы ускоряетесь, то даже если доступная вам область ограничена внутренностью купе, вы почувствуете силу, действующую на ваше тело. Например, если кресло, в котором вы сидите, обращено вперед по ходу движения и прикручено к полу вагона, вы почувствуете силу, с которой спинка кресла будет давить на вас, совсем как в примере, приведенном Альбертом. Аналогично, если купе испытывает ускорение, направленное вверх, вы почувствуете силу, действующую на ваши ноги со стороны пола. Идея Эйнштейна состояла в том, что, оставаясь в закрытом купе, вы не сможете определить, когда на вас действует ускорение, а когда


48ВВВВВВВВВВВВВВВВВВВВВВВВВВВВВВ Часть Рџ. Дилемма пространства, времени Рё квантов

сила тяготения; если их величины совпадают, сила, создаваемая ускоренным движением, и сила, возникающая под действием гравитационного поля, неразличимы. Если ваше купе неподвижно стоит на поверхности Земли, вы чувствуете привычную силу, действующую на ваши ноги со стороны пола; точно такими же будут ощущения, если вы ускоренно движетесь вверх. Это та самая эквивалентность, которую Альберт использовал для решения проблемы с запуском в космос оставленной террористами бомбы. Если вагон опрокинется, вы почувствуете со стороны спинки кресла силу (не дающую вам упасть), которая будет такой, как если бы вагон ускорялся в горизонтальном направлении. Эйнштейн назвал неразличимость ускоренного движения и гравитации принципом эквивалентности. Этот принцип составляет основу общей теории относительности2'.

Описание, приведенное выше, показывает, что общая теория относительности завершает работу, начатую специальной теорией относительности. Используя принцип относительности, специальная теория относительности провозглашает равноправие точек зрения наблюдателей: законы физики проявляются одинаковым образом для всех наблюдателей, находящихся в состоянии равномерного движения. Но это равноправие на самом деле является ограниченным, поскольку из него исключается огромное число точек зрения других наблюдателей, находящихся в состоянии ускоренного движения. Прозрение, пришедшее к Эйнштейну в 1907 г., показывает, как охватить все точки зрения — и тех, кто движется с постоянной скоростью, и тех, кто ускоряется, — в рамках одной изящной концепции. Поскольку нет различия между ускоренным пунктом наблюдения в отсутствии гравитационного поля и неускоренным пунктом наблюдения в присутствии гравитационного поля, можно выбрать это последнее описание и провозгласить, что все наблюдатели, независимо от состояния движения, могут утверждать, что они неподвижны, а «остальная часть мира движется рядом с ними», если они подходящим образом введут гравитационное поле в описание своего окружения. В этом смысле, благодаря включению гравитации, общая теория относительности гарантирует нам, что все возможные точки зрения являются равноправными. (Как мы увидим ниже, это означает, что различия между наблюдателями в главе 2, которые были основаны на ускоренном движении — как в случае с Джорджем, устремившимся за Грейс, включив свой ранцевый двигатель, и постаревшим меньше, чем она — допускают эквивалентное описание без ускорения, но с гравитацией.)

Эта глубокая связь между гравитацией и ускоренным движением, несомненно, представляет собой блестящую догадку, но почему она сделала Эйнштейна столь счастливым? Причина, попросту говоря, состоит в том, что гравитация — загадочное явление. Это грандиозная сила, пронизывающая жизнь космиса, но она ускользающе непонятна. С другой стороны, ускоренное движение, хотя и является несколько более сложным, чем равномерное, является конкретным и вполне материальным. Эйнштейн понял, что, благодаря взаимосвязи между этими явлениями, он может использовать понимание ускоренного движения в качестве могучего инструмента для достижения такого же понимания гравитации. Претворить эту стратегию в жизнь было нелегко даже для такого гения, как Эйнштейн, но, в конечном счете, этот подход принес свои плоды в виде общей теории относительности. Чтобы достичь этого, Эйнштейну пришлось выковать второе звено цепи, объединяющей гравитацию и ускоренное движение, — кривизну пространства и времени, — к обсуждению которой мы сейчас перейдем.