Решение систем линейных уравнений итерационными методами

Нахождение корней нелинейных уравнений

 

В таблице 1 даны варианты заданий алгебраических уравнений вида f(x)=0 (уравнение 1) и трансцендентных уравнений (уравнение 2).

 

Таблица 1

№ варианта Уравнение 1 Уравнение 2
х3 – 3х2 + 9х – 8=0 x – sin x=0,25
х3 –6х – 8=0 tg(0,58x + 0,1)=x2
х3 – 3х2 + 6х +3=0 Öx – cos(0,387x)=0
х3 – 0,1х2 + 0,4х – 1,5=0 tg(0,4x + 0,4)=x2
х3 – 3х2 + 9х +2=0 lg x – 7/(2x+6)=0
х3 + х – 5=0 tg(0,5x + 0,2)=x2
х3 +0,2х2 + 0,5х – 1,2=0 3x-cosx – 1=0
х3 + 3х + 1=0 x + lg x= 0,5
х3 +0,2х2 + 0,5х – 2=0 tg(0,5x + 0,1)=x2
х3 – 3х2 + 12х – 9 =0 x2+4sin x = 0
х3 – 0,2х2 + 0,3х – 1,2=0 ctg 1,05x – x2=0
х3 – 3х2 + 6х – 2=0 tg(0,4x + 0,3)=x2
х3 – 0,1х2 + 0,4х – 1,5=0 xlg x – 1,2=0
х3 + 3х2 + 6х – 1=0 1,8x2 – sin 10x – 0,1=0
х3 +0,1х2 + 0,4х – 1,2=0 ctg x – x/4=0
х3 +4х – 6=0 tg(0,3x + 0,4)=x2
х3 + 0,2х2 + 0,5х +0,8=0 x2 – 20sin x + 1=0
х3 – 3х2 + 12х – 12=0 ctg x – x/3=0
х3 – 0,2х2 + 0,3х +1,2=0 tg(0,47x + 0,2)=x2
х3 –2х +5=0 x2 +4sin x =0

 

 

Требуется:

- Построить на ЭВМ графики функций y=f(x) для локализации корней (в Excel или Mathcad)

- Выбрать любой корень в каждом из уравнений (1) и (2)

- Самостоятельно определить промежуток для уточнения корня

- Вычислить выбранные корни разными методами

- Выяснить вид сходимости в методе итераций (монотонное или двухстороннее приближение к корню).

 

Рекомендация: если в методе итераций получается расхождение (не выполняется условие сходимости), выразите из уравнения f(x)=0 другое Х, например:

 

 

Пример выполнения.

 

Решить уравнения:

 

(1)

(2)

=19,07267; =86,59282; =-237,0059; =-1697,081;

 

с помощью методов: комбинированного, деления пополам, секущих, итераций.

 

Решение.

 

Построим графики исходных функций для определения интервалов нахождения корней.

 

 

 

Составим программу на языке Pascal в среде Delphi 7 для нахождения корней уравнений.

 

unit sss111;

 

interface

 

uses

Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,

Dialogs, ExtCtrls;

 

type

TForm1 = class(TForm)

Image1: TImage;

procedure Image1Click(Sender: TObject);

private

{ Private declarations }

public

{ Public declarations }

end;

const a1=19.07267; a2=86.59282;

a3=-237.0059; a4=-1697.081;

a=10; b=12;

var

Form1: TForm1;

x,x2,l,p,f,f2:real;

i:integer;

st:string;

implementation

 

{$R *.dfm}

 

function y(k:real):real;

begin

y:=2*ln(abs(k))-(k/2)+1;

end;

function yp(k:real):real;

begin

yp:=2/abs(k)-1/2;

end;

function yn(k:real):real;

begin

yn:=k*k*k*k+a1*k*k*k+a2*

sqr(k)+a3*k+a4;

end;

function ynp(k:real):real;

begin

ynp:=4*k*k*k+3*a1*sqr(k)+2*a2*k+a3;

end;

function w(k:real):real;

begin

w:=4*ln(abs(k))+2;

end;

function wn(k:real):real;

begin

wn:=(k*k*k*k+a1*k*k*k+a2*sqr(k)+a4)/-a3;

end;

 

procedure TForm1.Image1Click(Sender: TObject);

begin

with Image1.Canvas do

begin

x:=a;

x2:=b;

repeat

x:=x-(y(x)/(y(x2)-y(x)))*(x2-x);

x2:=x2-y(x2)/yp(x2);

until x2=x;

str(x:30:20,st);

textout(10,10,'Комбинированный метод:'+st);

x:=a;

x2:=b;

repeat

x2:=x;

x:=w(x);

until x2=x;

str(x:30:20,st);

textout(10,25,'Метод итераций:'+st);

x:=a;

x2:=b;

repeat

l:=(x+x2)/2;

p:=y(l);

if p=0 then

begin

str(l:30:20,st);

textout(10,40,'Метод половинного деления:'+st);

i:=1;

break;

end else

f:=y(x);

f2:=y(x2);

if f*p<0 then x2:=l

else x:=l;

until x2-x<=0.00000000001;

if i<>1 then begin

str(l:30:20,st);

textout(10,40,'Метод половинного деления:'+st); end;

x2:=b;

x:=x2-y(x2)/yp(x2);

i:=0;

repeat

if frac(i/2)=0 then begin if i=0 then

p:=x2 else p:=x; end;

x:=x-y(x)*(x-p)/(y(x)-y(p));

i:=i+1;

until x-x=0;

str(l:30:20,st);

textout(10,55,'Метод секущих:'+st);

end;

end;

end.

 

Протокол.

 

Для уравнения (1) для первого и второго интервалов соответственно:

 

Для уравнения (2) для первого и второго интервалов соответственно:

 

Содержание отчета:

 

1. Графики функций,

2. увеличенный фрагмент графика для пояснения метода решения,

3. таблицы промежуточных значений (в таблицы заносятся изменение интервала [a;b], значения корней, функций и производных в нужных точках, абсолютные погрешности);

4. Относительные погрешности найденных корней Х и абсолютные погрешности функции (отличие от 0) в найденных точках;

5. Выводы.

 

Контрольные вопросы:

1. Перечислите методы отделения корней.

2. Метод половинного деления.

3. Метод хорд.

4. Метод касательных.

5. Упрощенный метод касательных.

6. Комбинированный метод хорд и касательных.

7. Метод секущих.

8. Метод итерации.

9. Что такое функция сжатия?

10. Скорость достижения требуемой точности в разных методах.

11. Надежность методов.

 

Лабораторная работа №2

Решение систем линейных уравнений итерационными методами

 

Решить СЛАУ методом итераций. Варианты заданий приведены в таблице 2:

 

Таблица 2

1). 3,5x1 - 1,7x2 + 2,8x3 = 1,7 5,7x1 + 3,3x2 + 1,3x3 = 2,1 2,1x1 + 5,8x2 + 2,8x3 = 0,8 2). 2,1x1 + 4,4x2 + 1,8x3 = 1,1 0,7x1 - 2,8x2 + 3,9x3 = 0,7 4,2x1 - 1,7x2 + 1,3x3 = 2,8
3). 3,1x1 + 2,8x2 + 1,9x3 = 0, 1,9x1 + 3,1x2 + 2,1x3 = 2,1 7,5x1 + 3,8x2 + 4,8x3 = 5,6 4). 4,1x1 + 5,7x2 + 1,2x3 = 5,8 0,8x1 + 1,1x2 - 2,8x3 = 6,7 9,1x1 - 3,6x2 + 2,8x3 = 9,8
5). 2,7x1 - 0,8x2 + 4,1x3 = 3,2 1,1x1 + 3,7x2 + 1,8x3 = 5,7 3,3x1 + 2,1x2 - 2,8x3 = 0,8 6). 1,9x1 + 1,1x2 + 3,8x3 = 7,8 7,6x1 + 5,8x2 - 4,7x3 = 10,1 1,8x1 - 4,1x2 + 2,1x3 = 9,7
7) 3,2x1 - 8,5x2 + 3,7x3 = 6,5 0,5x1 + 0,34x2 +3,7x3 = -0,24 4,6x1 + 2,3x2 - 1,5x3 = 4,3. 8). 4,2x1 + 6,7x2 - 2,3x3 = 2,7; 5,4x1 - 2,3x2 + 1,4x3 = - 3,5; 3,4x1 + 2,4x2 + 7,4x3 = 1,9.
9). 1,5x1 + 4,5x2 + 1,3x3 = -1,7 2,7x1 - 3,6x2 + 6,9x3 = 0,4 6,6x1 + 1,8x2 - 4,7x3 = 3,8 10). 3,4x1 - 3,6x2 - 7,7x3 = -2,4 5,6x1 + 2,7x2 - 1,7x3 = 1,9 -3,8x1 + 1,3x2 +3,7x3 = 1,2
11). -2,7x1 + 0,9x2 - 1,5x3 = 3,5 3,5x1 - 1,8x2 + 6,7x3 = 2,6 5,1x1 + 2,7x2 + 1,4x3 = -0,1 12). 0,8x1 + 7,4x2 - 0,5x3 = 6,4. 3,1x1 - 0,6x2 - 5,3x3 = -1,5; 4,5x1 - 2,5x2 + 1,4x3 = 2,5;
13). 5,4x1 - 6,2x2 - 0,5x3 = 0,52 3,4x1 + 2,3x2 + 0,8x3 = -0,8 2,4x1 - 1,1x2 + 3,8x3 = 1,8 14). 3,8x1 + 6,7x2 + 2,2x3 = 5,2 6,4x1 + 1,3x2 - 2,7x3 = 3,8 -2,4x1 - 4,5x2 + 3,5x3 = -0,6
15). -3,3x1 + 1,1x2 + 5,8x3 = 2,3 7,8x1 + 5,3x2 + 1,8x3 = 1,8 4,5x1 + 3,3x2 - 3,8x3 = 3,4 16). 3,8x1 + 7,1x2 - 2,3x3 = 4,8 -2,1x1 + 3,9x2 - 6,8x3 = 3,3 8,8x1 + 1,1x2 - 2,1x3 = 5,8
17). 1,7x1 - 2,2x2 - 4,0x3 = 1,8 2,1x1 + 1,9x2 - 2,3x3 = 2,8 4,2x1 + 1,9x2 - 0,1x3 = 5,1 18). 2,8x1 + 3,8x2 – 8,2x3 = 4,5 2,5x1 - 7,8x2 + 3,3x3 = 7,1 6,5x1 - 1,1x2 + 4,8x3 = 6,3
19). 2,3x1 + 0,7x2 + 4,2x3 = 5,8 -2,7x1 + 2,3x2 - 2,9x3 = 6,1 9,1x1 + 4,8x2 - 5,0x3 = 7,0 20). 3,1x1 + 6,8x2 + 2,1x3 = 7,0 -5,0x1 - 4,8x2 + 5,3x3 = 6,1 8,2x1 + 1,8x2 + 5,1x3 = 5,8

 

Пример выполнения

Дана СЛАУ:

 

-93х1-18х2-74х3=5

-14х1-96х2-72х3=-79

-73х1-83х2-92х3=-73

 

Решить СЛАУ методом итераций.

 

Решение.

 

Приведем систему к виду:

 

-93х1-18х2-74х3=5

-14х1-96х2-72х3=-79

-0.8125х1+12.1843х2+18.4205х3=-7.4535

 

Составим программу для решения СЛАУ.

 

uses crt;

label m1;

var

i,j,n,k,r:integer; s:real;

a:array [1..10,1..10] of real;

xc,xn,x:array [1..10] of real;

procedure q;

begin

for i:=1 to n do

begin

s:=0;

begin

for j:=1 to n do

begin

if j=i then continue;

s:=s-a[i,j]*x[j];

end;

x[i]:=(a[i,n+1]+s)/a[i,i];

xn[i]:=x[i];

x[i]:=xc[i];

end;

end;

end;

begin

clrscr;

write('Vvedi kol-vo ur-ij:');

readln(n);

writeln('Vvedi matricj A and B:');

for i:=1 to n+1 do

begin

if i=n+1 then writeln(' B') else

write('A',i:1,' ');

end;

for i:=1 to n do

begin

gotoxy(1,i+3);

for j:=1 to n+1 do

begin

readln(a[i,j]);

gotoxy(7*j,i+3);

end;

end;

writeln;

k:=0; r:=0;

m1: k:=k+1;

repeat

begin

for i:=1 to n do

x[i]:=xc[i];

q;

for i:=1 to n do

xc[i]:=xn[i];

for i:=1 to n do

writeln('x',i:1,'=',x[i]:8:4);

writeln(k:5);

writeln('For exit press "probel"');

if readkey=#13 then

goto m1 else break;

end;

until r=0;

end.

 

 

Лабораторная работа №3