Определение понятия математической модели и ее свойства

 

 

Еще не существует стандартизированной терминологии и она вряд ли появится, так как за всю историю математического моделирование очень большое количество ученных занимались данной темой.

Математическое моделирование применяется в различных сферах человеческой жизни. Таких как, например: математика, биохимия, медицина и так далее [11].

Определение математической модели, данное А.Д. Мишкисом.

Пусть мы исследуем совокупную величину S свойств некого объекта A (объект: система, ситуация, явление, процесс и так далее). Для чего мы строим математический объект A' – арифметическое соотношение, геометрическая фигура, система уравнений и так далее, исследование которого средствами математики должно дать ответы на поставленные вопросы о свойствах S. В данном случае математический объект A' называют математической моделью объекта A относительно совокупности свойств S. В определении дает понять не только то, что объекты A и A' имеют разную природу, но и то, что A' определяется не только самим оригиналом A, но и совокупностью его исследуемых свойств S. То если мы проводим два исследования одного и того же объекта A по отношении двух различных совокупностей S1 и S2 его свойств, то соответствующие математические модели ' и ' A1 A2 могут быть совершенно различны. Из данного исследования следует первое свойство математических моделей - их множественность. Выделим, что здесь имеется в виду не только множественность моделей, связанная с их иерархичностью, а результат порожденный необходимостью исследования различных систем , , ... S1 S2 его свойств.

Например, одно и тоже массированное кучевое облако можно рассматривать как с точки зрения порождения им нисходящих воздушных потоков, распределяющихся далее по поверхности земли и осознаваемые нами как ветровой порыв перед началом сильного ливневого дождя, так и как зону высокой электрической активности атмосферы. Все это проявление объекта представляет высокую опасность для полета воздушных судов. Нисходящие потоки опасны на этапах взлета - посадки, из-за значительного изменения величины подземной силы крыла воздушного судна (резкая смена направление скорости ветра с встречного на попутное). Возникающие в таком облаке сильные электрические поля могут создать разряд атмосферного электричества (молнию), результатом воздействия которого на воздушного судна может стать полный или частичный выход из строя радиоэлектронной аппаратуры на борту воздушного судна. Ясно, что в первом случае для модели используются уравнения аэрогидродинамики и исследуется поле скоростей воздушных потоков (математическая модель относительно совокупности признаков S1). Во втором случае изучается электрическая структура облака и строится электродинамическая модель (относительно совокупности признаков S2).

Вторым, наиболее важным свойством является единство математических моделей. Отличающим фактом является то, что разнообразные реальные системы или их содержательные модели могут иметь одну и ту же математическую модель[4].

Весомым в теории математического моделирования является постоянное согласование всех аспектов построения модели с задачами и целями исследования. Поэтому выделим на первый план некоторые существенные для исследований особенности механических систем и процессов.

Во-первых, факторы, определяющие такие объекты, характеризуются, как измеримые величины – параметры.

Во-вторых, в основе таких моделей лежат уравнения, описывающие фундаментальные законы природы (механики), не нуждающиеся в пересмотре и уточнении. Даже готовые частные модели отдельных явлений, используемые при составлении более общих, хорошо сформулированы и описаны с точки зрения условий и областей применения.

В-третьих, огромное препятствие при разработке моделей механических систем и процессов представляет описание недостоверно известных характеристик объекта, как функциональных, так и числовых.

В-четвертых, нынешние требования к таким моделям подводят к необходимости учета множества факторов, влияющих на поведение объекта, не только таких, которые связаны известными законами природы. Все эти особенности приводят к тому, что модели механических систем и процессов относятся в основном к классу математических[5].

Математические модели базируется на математическом описании объекта. В математическое описание, естественно, прежде всего, входят взаимосвязи параметров объекта, что характеризует его особенности функционирования. Такие связи можно представить в виде:

 

 

Рисунок 2.1.1 - Взаимосвязи параметров объекта

 

Первые четыре из указанных видов носят обобщающее название: аналитических зависимостей.

Математическое описание заключает в себе не только взаимосвязи элементов и параметров объекта (закономерности и законы), но и полный набор функциональных и числовых данных объекта (характеристики; начальные, граничные, конечные условия; ограничения), а также методы вычисления выходных параметров модели. То есть математическое описание – это полная совокупность функций, методов, данных вычисления, позволяющая получить результат.

Однако в математическую модель может не входить часть математического описания (чаще всего некоторые исходные данные), но кроме него обязаны содержаться описания всех допущений, использованных для ее построения, а также алгоритмы перевода исходных и выходных данных с модели на оригинал и обратно.

 

Рисунок 2.1.2 – Математическое описании модели

В качестве дополнения к классификации математические модели в зависимости от природы объекта, решаемых задач и применяемых методов могут различаться следующими видами:

– расчетные (алгоритмы, номограммы, формулы, графики, таблицы);

– соответственные (пример: модель в аэродинамической трубе и реальный полет самолета в атмосфере);

– подобные (пропорциональные соответствующие параметры и одинаковые математические описания);

– нелинейные и линейные (описываемые функциями, содержащие основные параметры только в степени 0 и 1, или любыми видами функций),

– нестационарные и стационарные (зависящие или независящие от времени),

– дискретные или непрерывные,

– стохастические или детерминированные (вероятностные, однозначные или точные: модели массового обслуживания, имитационные и др.),

– нечеткие и четкие (примеры нечетких множеств: около 10; глубоко или мелко; хорошо или плохо).

Исходя из исторических событий сложилось так, что под математической моделью порой подразумевают лишь один особый вид моделей, содержащих только однозначное прямое математическое описание в виде вычислительных алгоритмов или аналитических зависимостей – то есть детерминированная математическая модель, при помощью которой при одних и тех же исходных данных можно получить лишь один и тот же результат. Большое распространение получили детерминированные модели, устанавливающие связь с параметрами оригинала при помощи коэффициентов пропорциональности, всех одновременно равных единице. Математическое описание, используемое такой моделью, естественно рассматривать как описание непосредственно оригинала – данное утверждение верно: у модели и оригинала в этом случае существует одно общее математическое описание. В условиях такой кажущейся простоты неопытный инженер воспринимает и модель уже не как модель, а как оригинал. Однако такая математическая модель является всего лишь моделью со всеми упрощениями, условностями, абстракциями, предположениями, положенными в ее основу. Появляется желание "упростить" процесс добротного моделирования, что вообще говоря невозможно, так как модель или соответствует оригиналу, или ее нет вообще. Халатное отношение к этому приводит к множеству ошибочных выводов в прикладных исследованиях, и полученные результаты не соответствуют реальному положению вещей.

В качестве антипода детерминированных моделей представлены модели имитационные.

Имитационные модели (стохастические) – это математические модели таких оригиналов, для отдельных элементов которых отсутствует аналитический вид математического описания. Математическое описание имитационных моделей содержит в себе описание случайных процессов (стохастических). В качестве такого описания представляют разнообразные формы законов распределения, которые можно составить на основании статистической обработки результатов наблюдения за оригиналом.

В математическое описание имитационных моделей кроме законов распределения случайных величин, которые описывают явление, может входить описание взаимосвязей случайных величин (например, с помощью моделей теории массового обслуживания), а также алгоритм статистических испытаний (метод Монте-Карло для реализации элементарных случайных событий). Отсюда следует, что имитационные модели используют математический аппарат теории вероятностей: математической статистики, теории массового обслуживания и метода статистических испытаний.

С помощью имитационных моделей воспроизводится один или несколько из возможных способов функционирования объекта, то есть то, что вероятнее всего могло бы быть на самом деле. Это дает возможность получить дополнительный статистический материал об исследуемом оригинале и выявить подчас такие эффекты, которые в реальном эксперименте невозможно обнаружить по тем или иным причинам.

Исходя из теории данного подпункта, можно сделать вывод, что математическое моделирование изучается как в обычной жизни, так и науками. Математическое моделирование это способ изучения и изображения математических моделей.