Биотические и антропогенные факторы

Абиотические факторы

Абиотические факторы — факторы неживой природы, физические и химические по своему характеру. К их числу относятся: свет, температура, влажность, давление, соленость (особенно в водной среде), минеральный состав (в почве, в грунте водоемов), движения воздушных масс (ветер), движения водных масс (течения) и т. д. Сочетание различных абиотических факторов определяет распространение видов организмов по разным областям земного шара. Всем известно, что тот или иной биологический вид встречается не повсеместно, а в районах, где имеются необходимые для его существования условия. Именно этим, в частности, объясняется географическая приуроченность различных видов на поверхности нашей планеты.

Следует отметить, что существует немало видов-космополитов, т. е. обитающих повсюду. Например, двустворчатый моллюск мидия живет в морях и океанах обоих полушарий от полярных областей до экватора. Много видов-космополитов встречается среди паразитов. Например, такие паразиты человека, как дизентерийная амеба, детская острица, аскарида, вши, распространены повсеместно.

Как уже отмечалось выше, существование определенного вида зависит от сочетания множества различных абиотических факторов. Причем для каждого вида значение отдельных факторов, а также их комбинации весьма специфично.

Важнейшим для всех живых организмов является свет. Во-первых, потому, что это практически единственный источник энергии для всего живого. Автотрофные (фотосинтезирующие) организмы — цианобактерии, растения, преобразуя энергию солнечного света в энергию химических связей (в процессе синтеза органических веществ из минеральных), обеспечивают свое существование. Но кроме того, органические вещества, ими созданные, служат (в виде пищи) источником энергии для всех гетеротрофов. Во-вторых, свет играет важную роль как фактор, регулирующий образ жизни, поведение, физиологические процессы, происходящие в организмах. Вспомним такой хорошо известный пример, как осеннее сбрасывание листвы у деревьев. Постепенное сокращение светового дня запускает сложный процесс физиологической перестройки растений в преддверии долгого зимнего периода.

Изменения светового дня в течение года имеют огромное значение и для животных умеренного пояса. Сезонностью обусловлены размножение многих их видов, смена оперения и мехового покрова, рогов у копытных, метаморфоз у насекомых, миграции рыб, птиц.

Не менее важным абиотическим фактором, чем свет, является температура. Большинство живых существ может жить лишь в диапазоне от –50 до +50 °С. И главным образом в местах обитания организмов на Земле отмечаются температуры, не выходящие за эти пределы. Однако есть виды, которые приспособились к существованию при очень высоких или низких значениях температуры. Так, некоторые бактерии, круглые черви могут обитать в горячих источниках с температурой до +85 °С. В условиях Арктики и Антарктиды встречаются разные виды теплокровных животных — белые медведи, пингвины.

Температура как абиотический фактор способна существенно влиять на темпы развития, физиологическую активность живых организмов, поскольку подвержена суточным и сезонным колебаниям.

Другие абиотические факторы не менее важны, но в разной степени для разных групп живых организмов. Так, для всех наземных видов существенную роль играет влажность, а для водных — соленость. На фауну и флору островов в океанах и морях значительное влияние оказывает ветер. Для обитателей почвы важна ее структура, т. е. размер частиц грунта.

Биотические и антропогенные факторы

Биотические факторы(факторы живой природы) представляют собой разнообразные формы взаимодействий организмов как одного, так и разных видов.

Взаимоотношения организмов одного видачаще имеют характер конкуренции, причем достаточно острой. Это обусловлено их одинаковыми потребностями — в пище, территориально пространстве, в свете (для растений), в местах гнездования (для птиц) и т. д.

Нередко во взаимоотношениях особей одного вида встречается и кооперация. Стайный, стадный образ жизни многих животных (копытных, котиков, обезьян) позволяет им успешно защищаться от хищников, обеспечить выживание детенышей. Любопытный пример представляют волки. У них в течение года наблюдается смена конкурентных отношений на кооперативные. В весенне-летний период волки живут парами (самец и самка), выращивают потомство. При этом каждая пара занимает определенную охотничью территорию, обеспечивающую их пропитание. Между парами идет жесткая территориальная конкуренция. В зимний же период волки собираются в стаи и совместно охотятся, причем в волчьей стае складывается довольно сложная «социальная» структура. Переход от конкуренции к кооперации обусловлен здесь тем, что в летний период добычи (мелких животных) много, а зимой доступны лишь крупные животные (лоси, олени, кабаны). С ними волку в одиночку не справиться, вот и образуется стая для успешной совместной охоты.

Взаимоотношения организмов разных видоввесьма разнообразны. У тех, которые имеют сходные потребности (в пище, местах гнездования), наблюдается конкуренция. Например, между серой и черной крысами, рыжим тараканом и черным. Не очень часто, но между разными видами складывается кооперация, как на птичьем базаре. Многочисленные птицы мелких видов первыми замечают опасность, приближение хищника. Они поднимают тревогу, а крупные, сильные виды (например, серебристые чайки) активно нападают на хищника (песца) и прогоняют его, защищая и свои гнезда, и гнезда мелких птах.

Широко распространено во взаимоотношениях видов хищничество.При этом жертву хищник убивает и целиком съедает. К такому способу близко примыкает и растительноядность: здесь также особи одного вида поедают представителей другого (иногда, правда, не целиком съедая растение, а лишь частично).

Очень часто во взаимоотношениях разных видов встречаются симбиотическиесвязи. Под симбиозом понимают совместное существование двух видов организмов. Один вид (симбионт) существует благодаря «эксплуатации» другого (хозяина). Различают три основные формы симбиоза: комменсализм, мутуализми паразитизм.

При комменсализмесимбионт извлекает пользу из сожительства, а хозяину не причиняется вреда, но он и не получает никакой пользы. Например, рыба-лоцман (комменсал), живя возле крупной акулы (хозяин), имеет надежного защитника, да и «со стола» хозяина ей перепадает пища. Акула же попросту не замечает своего «нахлебника». Широко наблюдается комменсализм у животных, ведущих прикрепленный образ жизни, — губок, кишечнополостных (рис. 1).

Рис. 1.Актиния на раковине, занятой раком-отшельником

Личинки этих животных оседают на панцирь крабов, раковину моллюсков, а развившиеся взрослые организмы используют хозяина как «транспортное средство».

Мутуалистические взаимоотношенияхарактеризуются обоюдной выгодой как для мутуалиста, так и для хозяина. Широко известные примеры тому — кишечные бактерии у человека («поставляющие» своему хозяину необходимые витамины); клубеньковые бактерии - фиксаторы азота, -живущие в корнях растений, и т. д.

Паразитизмхарактеризуется антагонистическими отношениями. Паразит, питаясь за счет хозяина (его тканей, крови, питательных веществ), причиняет ему вред, а хозяин стремится уничтожить или удалить паразита либо подавить его активность и жизнеспособность. Паразит, в свою очередь, противодействует защитным реакциям хозяина.

Наконец, два вида, существующие на одной территории («соседи»), могут никак не взаимодействовать друг с другом. В этом случае говорят о нейтрализме,отсутствии каких-либо взаимоотношений видов.

Антропогенные факторы -факторы (воздействующие на живые организмы и экологические системы), возникающие в результате деятельности человека.

 

 

Электромагнитное загрязнение окружающей среды

В связи со стремительным развитием научно-технического прогресса, особенно за последние сто лет, все большее внимание привлекает проблема воздействия плодов этого процесса на жизнедеятельность человеческого организма. Огромную актуальность приобретает проблема воздействия на человека электромагнитных полей различного диапазона. В радиодиапазоне электромагнитных волн, с момента изобретения радио, излучение нашей планеты выросло на несколько порядков и теперь, с позиции внешнего наблюдателя, мы выглядим как звезда, с возрастающей мощностью излучения. По объективным причинам человеческий организм не в состоянии адаптироваться к техногенному электромагнитному излучению и, возможно, не имеет соответствующих адаптационных механизмов. Эта проблема уже получила название электромагнитного смога. Широкое распространение индивидуальной мобильной связи безусловно придает этой проблеме особую актуальность.

Особенность мобильных телефонов, как генераторов электромагнитного излучения, состоит в том, что они находятся в непосредственном контакте с человеческим организмом как во время передачи полезного сигнала и его приема, так и в режиме ожидания. Причем контакт этот довольно глубокий, т.к. осуществляется с клетками головного мозга, на них соответственно и воздействуя в первую очередь. Вопрос о влиянии излучения мобильных телефонов в частности, а техногенных излучений в более широком аспекте вообще на человеческий организм как биологическую гиперкомплексную систему теперь исключительно актуален и имеет выраженный коммерческий оттенок. Если выпущенное на рынок устройство генерирует вредные для организма электромагнитные колебания, то оно, несомненно, должно быть запрещено и производитель, естественно, понесет значительные финансовые потери. Вся проблема заключается в адекватном определении вредности для биоформы того или иного излучения, причем этот фактор имеет несколько составных частей. Из них можно выделить частотную, амплитудную и фазовую.

Под частотной проблемой понимается анализ вредности (или полезности) того или иного спектра электромагнитного излучения. Суть в том, что формирование любого биологического организма в среде обитания происходит не в условиях его полной изоляции от окружающего мира, а, наоборот, в рамках полного и максимально глубокого контакта. В течение миллионов лет существования органическая жизнь на планете развивалась в условиях воздействия естественных электромагнитных полей и не только хорошо к ним приспособилась, но и не может без них существовать. Поэтому изоляция живого организма от этих излучений, являющихся неотъемлемой частью среды обитания, принесет только вред. Главный вопрос в том, какие излучения являются для человека полезными, а какие, наоборот, вредными. Например, солнечное излучение, согласно общему мнению, является весьма полезным, если не считать периоды активного Солнца и наличие озоновых дыр в атмосфере. А как быть с искусственным излучением в соляриях ультрафиолетовых ламп, дающих совершенно иной спектр излучения, но с сильным присутствием ультрафиолетовой компоненты. Целенаправленно они практически не проверялись на негативность последействия - дают хороший загар и замечательно, а какие могут возникнуть последствия – продавцов этих услуг особо не интересует. Необходимо провести обследование организма (и не одного, а как минимум контрольной группы, разного возраста, разных типов кожи и т.д.) до искусственного загорания, во время его и после. Нереальность такого исследования совершенно очевидна, тем более, что владельцам косметических кабинетов это не только абсолютно не нужно, но и может оказаться крайне вредным. Аналогичная ситуация возникает при эксплуатации любого прибора, генерирующего электромагнитные колебания того или иного спектра.

Под амплитудной проблемой понимается вопрос о влиянии интенсивности излучения на степень его воздействия. Развитие нанотехнологии и совершенствование контрольно-метрологической аппаратуры выявило совершенно неожиданные факты, которые для своего объяснения потребовали немалых усилий от исследователей. Обнаружилось, что на известные ранее физические явления, такие, как кристаллизация, полимеризация, фазовые переходы и пр. оказывают влияние слабые и сверхслабые воздействия электромагнитных, электрических и магнитных полей. Причем интенсивность воздействия может быть гораздо менее уровня тепловых колебаний в структуре твердого тела, т.е. по традиционно сложившимся воззрениям таковое воздействие должно мгновенно размываться и аннулироваться. Поскольку большинство биологических систем представляют собой коллоидные системы, то сегодня они являются объектом пристального изучения с позиций нанотехнологии.