Влияние температуры и основных физических характеристик на проявление реологических свойств мёрзлых грунтов.

Введение.

Площадь распространения многолетнемёрзлых пород составляет до 25% всей суши земного шара и более 65% площади Российской Федерации. Сплошное распространение многолетнемёрзлых пород наблюдается в Антарктиде и на прилегающих к ней островах, в Гренландии, а также на высокогорных участках в Южной Америке и в Африке. На территории России многолетнемёрзлые породы распространены на побережье европейской части и занимают значительную территорию на Северо-Востоке страны. Австралия является единственным континентом, где не наблюдается распространения многолетнемёрзлых толщ.
Распространение мёрзлых толщ подчинено широтной и высотной зональности. По среднегодовым температурам, характеру распространения и мощности на многлетнемёрзлых пород выделяются пять зон. Географическая граница распространения мёрзлых пород на территории России.
Непрерывность мёрзлых толщ по простиранию наблюдается только в самых северных районах. Но и там под крупными водоёмами и в местах усиленной циркуляции подземных вод можно встретить участки со сквозным протаиванием. Такие участки называются "таликами", при этом различают "сквозные талики" и "несквозные", или "ложные" талики. Количество и площадь таликов возрастают в направлении от северных областей распространения мёрзлых пород к их "южной границе", или, точнее, в направлении, перпендикулярном геоизотермам в этой области.
Географическая южная граница распространения многолетнемёрзлых пород представляет собой линию, оконтуривающию с юга область распространения мёрзлых толщ, за исключением отдельных высокогорных участков мёрзлых пород в субтропических и тропических зонах. Кратковременное промерзание почвы связано с ночными заморозками; сезонное промерзание пород вызывается наличием среднесуточных отрицательных температур почвы зимой в связи с сезонными колебаниями климата, а причиной существования многолетнемёрзлых пород является продолжительное существование отрицательных среднегодовых температур пород вследствие многолетних колебаний теплообмена на поверхности Земли, периодически создающих отрицательные температуры в верхнем слое литосферы.

 

 

Деформации мерзлых грунтов.

Наиболее распространенный тип деформации мерзлых грунтов—пучение, связанное с увеличением объема грунта в результате перехода воды из жидкой фазы в твердую. Возникающие при этом положительные формы рельефа называются буграми пучения. Высота их обычно не более 2,0 м. Часто в вершинной части они разбиты радиальными морозобойными трещинами. Если бугры пучения образовались в пределах торфянистой тундры, возникают условия, благоприятствующие нарастанию торфа, и ледяные или мерзлые ядра таких бугров, а вместе с ними и сами бугры, получившие название торфяных, могут существовать долгое время. Торфяные бугры образуют группы, но встречаются и одиночные бугры. Высота их от 3 до 7м, форма различная, но чаще округлая, склоны и вершины обычно изрезаны трещинами. Торфяные бугры часто отделены друг от друга извилистыми болотистыми каналами.
При подтоке к месту пучения межмерзлотных или подмерзлотных вод образуются очень крупные бугры с ледяным ядром. Из трещин в торфяном покрове бугров в летнее время вытекает вода. Такие бугры нередко называют гидролакколитами. Высота гидролакколитов до 70 м, диаметр основания до 200 м. В СССР для обозначения таких бугров распространен термин «булгуннях». Булгунняхам тождественны пинго, встречающиеся на Аляске.

Если подземные воды (межмерзлотные или подмерзлотные) находят выход на поверхность, они образуют особые ледяные формы рельефа — наледи. Наледи часто образуются и в речных долинах при промерзании рек до дна. Такие наледи называют тарынами. Крупные наледи сохраняются в течение большей части лета. Геоморфологическое значение их заключается в том, что в районе наледей особенно энергично протекает морозное выветривание пород, слагающих склоны долины, таяние наледей ведет к интенсивной солифлюкции грунта.

Для микро- и мезорельефа областей с вечной мерзлотой характерны так называемые структурные грунты—формы рельефа, возникающие в результате сортировки неоднородной грунтовой массы, насыщенной водой, при многократном ее замерзании и оттаивании. Среди них различают: каменные многоугольники, каменные кольца, каменные полосы. Наиболее часто встречаются каменные многоугольники—слегка выпуклые участки (пятна) вязкого мелкозема, окруженные валиками камней. Если каменные валики соседних пятен не касаются друг друга, образуются каменные кольца. Поперечник каменных колец и многоугольников в полярных тундрах колеблется чаще всего от 1 до 2м, в гольцовом поясе гор — от 0,25 до 0,5 м. Ширина каменного бордюра 30—50 см.

Сортировка материала при образовании каменных колец и многоугольников происходит путем вымораживания более крупных обломков и смещения их к краям пятен, состоящих из мелкозема.

На наклонных поверхностях под влиянием солифлюкции каменные многоугольники приобретают продолговатую форму, вытягиваясь сверху вниз по склону в виде фестонов, при более крутом падении они превращаются в каменные полосы, чередующиеся с полосами из мелкозема. Ширина полос может варьировать в значительных пределах — от 5 см до 5м.

При попеременном замерзании и оттаивании однородных глинистых грунтов в тундре часто образуются пятна—медальоны. Это «голые» (лишенные растительности) глинистые пятна округлой или неправильной формы, величина которых колеблется от 0,5 м до нескольких метров в диаметре, рассеянные во множестве по покрытой растительностью поверхности тундры. Поверхность пятен плоская или возвышается над задернованными участками на 5—20 см. Тундру с таким рельефом образно называют пятнистой или медальонной. Возникновение пятен связывают с прорывом по трещинам на поверхность жидких глинистых грунтов, зажатых между двумя мерзлыми, постепенно сближающимися слоями мерзлоты — сезонной и многолетней. Таким образом, пятна-медальоны — это нечто вроде миниатюрных грязевых вулканчиков.

В полярных странах встречаются и другие типы структурных грунтов, в том числе полигональные. Это формы микрорельефа, представляющие собой правильные многоугольники (чаще всего пяти- и шестиугольники) диаметром до нескольких метров, разделенные трещинами. Образование полигональных грунтов связано с возникновением морозобойных трещин в условиях однородного мелкоземистого грунта. Сдавливаемая со всех сторон масса мелкоземистого грунта внутри полигона формирует слегка выпуклую поверхность. Морозобойным трещинам соответствуют понижения в рельефе. Такие формы возникают в том случае, если трещины не проникают глубже сезоннопромерзающего .слоя грунта.

Если морозобойные трещины проникают глубже, в них образуются ледяные клинья, не успевающие растаять за теплый сезон года. С течением времени они растут (и в глубину, и в ширину), разбивая мерзлую породу на отдельные блоки. Если вмещающая растущие клинья порода достаточно пластична, она выжимается в стороны и вверх по контакту с ледяными клиньями, образуя валики. Так возникают валиковые вогнутые полигоны. Высота валиков колеблется от 0,2 до 0,75 м, ширина трещин, разделяющих блоки, достигает 1,0 м, а поперечник полигонов—25 – 30 м. На рыхлых грунтах ровных поверхностей пойм, речных и морских террас наблюдаются и более крупные формы подобного типа — так называемые тетрагональные грунты. Валообразные гребни у них достигают 2,0 м высоты, а поперечник ровных площадок полигонов—100—200 м. А. И. Попов наблюдал в Западно-Сибирской низменности и Большеземельской тундре тетрагональные блоки, размеры которых достигали 300, 500 и даже 1000 м в поперечнике. Это уже формы не микро-, а мезорельефа.

Рассмотренные формы рельефа областей с вечномерзлыми грунтами связаны с накоплением льда или обломочного материала и их поэтому можно рассматривать как аккумулятивные формы мерзлотного рельефа. Реликты таких образований встречаются в перигляциальных зонах областей бывшего наземного оледенения, в том числе и в ископаемом состоянии в разрезах, в виде так называемых криотурбаций.

Денудационные формы мерзлотного рельефа связаны с таянием льда, с деградацией вечной мерзлоты. При этом образуются разнообразные просадочные формы. Величина термокарстовых форм варьирует в больших пределах: от нескольких метров до многих десятков километров в поперечнике и от долей метра до десятков метров глубины. Термокарстовые процессы в областях распространения вечной мерзлоты в ряде случаев развиваются под влиянием деятельности человека: после рубки леса, под пашней, при рытье канав, на участках лесных пожаров и т. д. Типичные карстовые формы в условиях вечной мерзлоты редки, а на равнинах с маломощным деятельным слоем—отсутствуют. С оттаиванием мерзлоты связаны термоабразионные и термоэрозионные формы.
Термоабразией называется термическое воздействие морского волнения на берега, сложенные вечномерзлыми грунтами. При этом у линии берега вырабатывается ниша вытаивания. По мере углубления ниши нависающий над ней карниз обрушивается, формируется термоабразионный клиф. Термическая абразия всегда сопровождается солифлюкционными процессами.

Термоэрозионные формы — это ложбины, овраги, долины, возникающие благодаря не только механическому и химическому, но и термическому воздействию поверхностных водных потоков на дно и берега, сложенные мерзлыми грунтами. Следует отметить, что в условиях вечной мерзлоты такие эрозионные формы, как рытвины и овраги, растут очень быстро. Эрозионные формы часто закладываются вдоль термокарстовых понижений или по трещинам полигональных грунтов. В последнем случае образуются, весьма специфичные формы рельефа—байджарахи—останцы мерзлого грунта, слагавшего ядро (блок) мерзлотного полигона. Размеры байджарахов от одного до многих метров по высоте и от 3 до нескольких десятков метров в диаметре основания.

Своеобразны и реки областей с вечномерзлыми грунтами. Летом они многоводны. Многоводность их обусловлена таянием мерзлых грунтов, с одной стороны, и отсутствием фильтрации воды в грунт, с другой (препятствует мерзлота). Благодаря многоводности реки обладают большой живой силой, поэтому они интенсивно расширяют свою долину. Этому способствует и термическое воздействие воды на мерзлые грунты, слагающие берега. Блуждание рек и связанное с ним расширение долин вызывается также накоплением осадков выше участков, промерзающих до дна.

Быстрое расширение долин приводит к тому, что поймы рек перестают заливаться даже в высокие паводки и превращаются в невысокие надпойменные террасы. На участках широтного течения рек четко выражена асимметрия склонов долин, обусловленная экспозицией: склоновые процессы на склонах северной и южной экспозиции происходят с разной интенсивностью.

Широко распространены в областях с вечномерзлыми грунтами солифлюкционные процессы, альтипланация и создаваемые ими формы рельефа.

Таким образом, области распространения вечной мерзлоты отличаются своеобразием и большим разнообразием форм микро- и мезорельефа, пространственное соотношение которых представлено на идеализированной схеме.

 

 

 

Реологические аспекты механики мёрзлых грунтов.

Реология (от греч. , «течение, поток» и -логия) — раздел физики, изучающий деформации и текучесть вещества.

По классическим теориям пластичности и упругости напряжённо-деформированное состояние тела вполне определяется величиной нагрузки и способом её приложения; если эта нагрузка не меняется ,то остаются неизменными и возникшие в теле напряжения и деформации. В реальных телах напряжённо-деформированное состояние меняется со временем и зависит от истории предшествующего загружения. Соответственно, соотношение между напряжением и деформацией не является однозначным, а изменяется, даже если одна из этих величин –напряжение или деформация –остаётся постоянной, другая будет изменяться во времени. Изучением закономерностей напряжённо-деформированного состояния занимается наука, называемая реологией.

Исследованиями Н.А.Цытовича и его сотрудников в 30-х годах, а несколько позже М.Н.Гольдштейном было обнаружено наличие у мёрзлых грунтов свойства текучести. Затем, в 50-х годах 20-го века С.С Вяловым был выполнен большой объём экспериментов в Игарской подземной лаборатории по определению деформируемости и прочности мёрзлых грунтов. Их результаты позволили выявить основные закономерности поведения мёрзлых грунтов под нагрузками: проявление ползучести, снижение прочности во времени , релаксацию напряжений. Данные исследований обобщены в монографии(Вялов,1959).В дальнейшем, под его руководством создано реологическое направление в механике мёрзлых грунтов, которое завоевало мировое признание и получило развитие в трудах отечественных и зарубежных учёных.: Ю.К.Зарецкого, С.Э.Городецкого, Н.К.Пекарской, Р.В.Максимяк, Ю.С.Миренбурга, Е.П.Шушериной, A.M.Fish, O.B.Anderslaud, D.M.Anderson, J.F.Nixon, R.Pusch, F.M.Sayles, B.Ladanyi, E.Penner и др.

На основании полученных закономерностей проявления реологических свойств мёрзлых грунтов разработаны решения, позволяющие по данным испытаний прогнозировать длительную прочность и деформации мёрзлых грунтов на основе теорий ползучести. Показана также применимость для этих целей методов временных аналогий. Их суть основана на интенсификации процесса разрушения, влияющими на него факторами(повышением температуры, увеличением нагрузки, льдистости, засолённости, заторфованности и т.д.) и на идентичности влияния времени и перечисленных факторов на прочность и ползучесть, что позволяет осуществлять прогнозы деформации и прочности на длительное время.(Роман,1987)

В целом реология мёрзлых грунтов рассматривает проявление ползучести, релаксации напряжений и снижения прочности тел при длительном воздействии нагрузок.

Ползучесть- процесс деформирования, развивающийся во времени, даже при постоянной нагрузке. Обычно в процессе испытаний мёрзлых грунтов при всех напряжённых состояниях определяют семейство кривых ползучести. В зависимости от напряжения проявляются затухающая, либо незатухающая ползучесть. Выделяют три стадии ползучести. При инженерных изысканиях важно учитывать, что третья стадия ползучести не допускается при использовании грунтов в качестве оснований.

Способы прогноза длительной деформации мёрзлых грунтов разработаны на основе технических теорий ползучести; теории старения; упрочнения; течения; наследственной ползучести.Общий закон развития деформаций, по которому производится прогноз, имеет вид(Вялов,1978):
et=(s/A(t, q)1/m(2.1)
где et – деформация за период времени tпри напряжении; s, A(t, q)и m–опытные параметры;q - температура грунта.

На основании уравнения (2.1) длительная прочность грунта за период времени t

определится:

st= A(t, q)et m, (2.2)

Релаксация.При нагружении постоянной силой F возникают деформации, развивающиеся во времени . Для прекращения развития этих деформаций необходимо уменьшать силу по некоторому закону F(t).Уменьшение во времени напряжения, необходимого для поддержания постоянной деформации называется релаксацией(расслаблением) напряжений. С позиции статистической физики релаксацию можно рассматривать как процесс установления статистического равновесия в физической системе, когда микроскопические величины, характеризующие состояние системы (напряжения), ассимптотически приближаются к своим равновесным значениям. Характеристикой явления расслабления напряжений является время релаксации,равное времени за которое напряжение уменьшается в eраз,которое характеризует продолжительность «осёдлой жизни» молекул, т. е. определяет подвижность материала. Например, горные породы, формирующие земную кору, обладают временем релаксации измерямым тысячелетиями , у стекла эта характеристика порядка столетий, у воздуха10-10, у воды10-11, у льда сотни секунд. Таким образом, в пределах 100-1000 секунд лёд ведёт себя как упругое тело( например, хрупко разрушается при ударе в условия большой нагрузки).При уменьшении нагрузки лёд течёт как вязкая жидкость. Аналогичное поведение-хрупкое разрушение при быстром приложении нагрузки и вязкое течение при длительном воздействии нагрузки–отчётливо проявляется у мёрзлых грунтов.(Вялов,1978)

Влияние температуры и основных физических характеристик на проявление реологических свойств мёрзлых грунтов.


Влияние минерального и гранулометрического состава.

При прочих равных условиях длительные деформации мёрзлых пород уменьшаются , а прочность увеличивается в ряду: лёд> глина> суглинок> супесь> песок. Увеличение деформируемости грунтов с ростом дисперсности вызвано, прежде всего, увеличением содержания незамёрзшей воды, а большие деформации льда связаны с особенностями его структурной решётки, которые придают свойства идеального реологического тела.

Деформируемость и прочность крупнообломочных мёрзлых грунтов обусловлена мелкодисперсными минеральными заполнителями, либо ледяными включениями. При этом необходимо учитывать вид напряжённого состояния. Если при плотной упаковке минеральных частиц сопротивление сжатию мёрзлых крупнообломочных грунтов может превышать прочность мелкодисперсных грунтов за счёт жёсткости скелета, то сопротивление растяжению, либо сдвигу может быть весьма незначительным в связи с низкими цементационными связями между отдельными обломками.


Влияние льдистости.

В целом, мёрзлые грунты обладают более высокой прочностью (в несколько раз, порой даже в несколько десятков) по сравнению с талыми .Это обусловлено цементацией льдом частиц грунта, превращение его по агрегатному состоянию в твёрдое тело.

В зависимости от интенсивности промораживания (величины температурного градиента) и граничных условий(одностороннего промораживания или промораживания с нескольких сторон), наличия подтока воды и задержек в продвижении границы промораживания, в процессе промерзания грунтов формируется своеобразная криогенная текстура, существенно определяющая и свойства (рис 3.1)

Рис 3.1 Основные виды криогенной текстуры в мёрзлых грунтах.

(Цытович,1973)

а- слитная(массивная); б-слоистая; в-ячеистая.
Увлажнение дисперсных грунтов до влажности соответствующей примерно 0.8-0.9 от полной влагоёмкости увеличивает их прочность при промерзании. Это обусловлено возрастанием количества цементационных связей льда с частицами грунта, вместе с тем формируется монолитная криогенная текстура. Однако, показано, что прочность льдистых грунтов зависит не только от общей льдистости, но и от количества и толщины ледяных шлиров, а также влажности грунтовых прослоев, а поскольку дальнейшее увлажнение приводит к распучиванию, образованию ледяных прослоек и включений, то увеличение льдистости за счёт включений приводит к уменьшению прочности. В свою очередь, расположение прослоев льда имеет влияние на предельно длительную прочность. Противоречивые результаты получались у разных авторов при исследовании зависимости площади контакта минеральных частиц грунта и льда: в одних случаях большая площадь, достигаемая большим количеством ледяных прослоев, обусловливала большую прочность, в сравнении с образцами грунта имеющими меньшее количество ледяных прослоев большей величины, при одинаковой льдистости. Тем не менее незатухающая ползучесть льда вне зависимости от расположения шлиров и их размеров приводит к длительным деформациям, протекающим в процессе всего срока эксплуатации мёрзлого грунта.

Однако, характер влияния влажности-льдистости на прочность грунта тесно связан с дисперсностью грунта, его минеральным составом, температурой.

 

Влияние засолённости.

Присутствие легкорастворимых солей в грунтовой влаге существенно влияет на механические свойства грунтов. В засолённом грунте наблюдаются снижение прочности и увеличение деформируемости(Ю.Я.Велли1990,В.И.Аксёнов,1978 и др.). Это обусловлено, в основном, изменением состава порового раствора, что обусловливает понижение температуры его замерзания и увеличение количества незамёрзшей воды. Экспериментально установлено влияние на механические свойства мёрзлых засолённых грунтов не только количества солей, но и их химического состава.(Роман,1994;Роман,Свинтицкая,1996).

Засоление мёрзлых пород обусловлено их генезисом, специфической геохимической обстановкой, различной для эпигенетического и сингенетического способов промерзания пород. Однако , для всех типов пород будут присущи все типы элементарных реакций: растворение, гидратация, гидролиз, замещение , окисление –восстановление. Различают морской, континентальный и техногенный типы засоления.

Морской тип засоления наблюдается в мёрзлых грунтах самых северных территорий- вдоль арктического побережья России и на островах. Для морского типа засоления характерно наличие хлоридов, в частности NaCl.Наименьшее значение Dsal =0.2-0.5% отмечается в песках; в супесях, суглинках и глинах засолённость колеблется от 0.4 до 2.1 %.

Континентальный тип засоления наблюдается в областях, где сочетание высоких летних температур воздуха с отрицательным балансом влаги способствовало соленакоплению в почвах и подстилающих грунтах. В солевом составе грунтов континентального типа засоления присутствуют ионы:SO42-Cl-, HCO3-,Na2+,Ca2+, Mg2+.

При промерзании рыхлых отложений в первую очередь происходит образование твёрдой фазы воды -льда. Морские воды с минерализацией более 30 г/л кристаллизуются при температурах, близких к –1.5….-2°С, а рассолы могут не замерзать при температурах –20°С и ниже., образуя криопэги. Процесс замерзания воды сопровождается сильной дифференциацией солей между твёрдой и жидкой фазами воды. Часть солей, растворённых в воде, оказывается вовлечённой в лёд, часть менее растворимых в воде солей выпадают в осадок, а часть отжимается в нижележащие слои воды, что приводит к увеличению минерализации этих вод.

Постепенное промерзание приводит к образованию слабоминерализованных льдов, а ниже границы промерзания- высококонцентрированных вод порядка 200 г/л и более, что обеспечивает существование горизонтов воды при отрицательной температуре. Процесс засоления породы характеризуется возникновением особенностей физико-механических свойств.

Следует отметить, что степень влияния растворённых солей обусловлена не характеристикой засолённости Dsal, а концентрацией порового раствора Кпр, формирующегося в процессе промерзания.

При одной и той же засолённости концентрация порового раствора будет снижаться с увеличением влажности. А, значит, и влияние засолённости на сопротивление мёрзлых грунтов нагрузкам будет снижаться с увеличением суммарной влажности. Поскольку в природных грунтах очень часто влажность грунта близка к полной влагоёмкости, то в ряду, в котором увеличивается влагоёмкость: песок <супесь <суглинок <глина< торф наблюдается уменьшение влияния засолённости на ползучесть и прочность.

В засолённых грунтах отмечаются все три стадии ползучести. Однако, стадии незатухающей ползучести и прогрессирующего течения наступают при меньших напряжениях.


Влияние заторфованности.

Наличие биогенных остатков в мёрзлых грунтах влияет на течение деформаций во время нагружения. В целом, анализ результатов исследований показывает, что для торфа, минеральных заторфованных грунтов при заторфованности более 30% и влажности, близкой к полной влагоёмкости, деформации носят вязкий характер с преобладанием стадии установившегося течения. Причём, если напряжение не превышает предела длительной ползучести, то стадия установившегося вязкого течения длится неограниченно долго. При увеличении нагрузки больше предела длительной ползучести установившаяся стадия переходит в стадию прогрессирующего течения с возрастающей скоростью. Характер деформирования слабозаторфоованных грунтов сходен с характером деформирования мёрзлых незаторфованных минеральных грунтов с выраженными стадиями ползучести. При напряжении меньшем предела длительной прочности для них отмечается затухающая ползучесть, а при напряжении, превышающем указанный предел –незатухающая.

Важно отметить, что для мёрзлых торфяных грунтов , как и для льда отмечены более высокие значения условно мгновенной прочности по сравнению таковой для минеральных грунтов. Длительная же прочность уменьшается быстрее и ее предельно-длительное значение меньше.

Очень важно учитывать степень разложения торфа .Менее разложившийся торф более гидрофильный, поэтому удерживает большое количество внутриклеточной влаги, основной объём которой находится в свободном рыхлосвязанном состоянии. С увеличением степени разложения повышается гидрофобность, но и вместе с тем увеличивается площадь удельной поверхности частиц. Количество связанной и, соответственно, незамёрзшей воды увеличивается, что приводит к снижению прочности.