СИСТЕМЫ ОБРАБОТКИ И ВОСПРОИЗВЕДЕНИЯ АУДИОИНФОРМАЦИИ ЗВУКОВАЯ СИСТЕМА ПК

 

Звуковая система ПК — комплекс программно-аппаратных средств, выполняющих следующие функции: запись звуковых сигналов, поступающих от внешних источников, например микрофона или магнитофона, путем преобразования входных аналоговых звуковых сигналов в цифровые и последующего сохранения на жестком диске; воспроизведение записанных звуковых данных с помощью внешней акустической системы или головных телефонов (наушников); воспроизведение звуковых компакт-дисков; микширование (смешивание) при записи или воспроизведении сигналов от нескольких источников; одновременная запись и воспроизведение звуковых сигналов (режим Full Duplex); обработка звуковых сигналов: редактирование, объединение или разделение фрагментов сигнала, фильтрация, изменение его уровня; обработка звукового сигнала в соответствии с алгоритмами объемного (трехмерного — 3D-Sound) звучания; генерирование с помощью синтезатора звучания музыкальных инструментов, а также человеческой речи и других звуков; управление работой внешних электронных музыкальных инструментов через специальный интерфейс MIDI.

 

Звуковая система ПК конструктивно представляет собой звуковые карты либо устанавливаемые в слот материнской платы, либо интегрированные на материнскую плату или карту расширения другой подсистемы ПК. Отдельные функциональные модули звуковой системы могут выполняться в виде дочерних плат, устанавливаемых в соответствующие разъемы звуковой карты.

МОДУЛЬ ЗАПИСИ И ВОСПРОИЗВЕДЕНИЯМодуль записи и воспроизведения звуковой системы осуществляет аналого-цифровое и цифроаналоговое преобразования в режиме программной передачи звуковых данных или передачи их по каналам DMA (Direct Memory Access — канал прямого доступа к памяти). Если при записи звука пользуются микрофоном, который преобразует непрерывный во времени звуковой сигнал в непрерывный во времени электрический сигнал, получают звуковой сигнал в аналоговой форме. Поскольку амплитуда звуковой волны определяет громкость звука, а ее частота — высоту звукового тона, постольку для сохранения достоверной информации о звуке напряжение электрического сигнала должно быть пропорционально звуковому давлению, а его частота должна соответствовать частоте колебаний звукового давления.

Дискретизация сигнала заключается в выборке отсчетов аналогового сигнала с заданной периодичностью и определяется частотой дискретизации. Причем частота дискретизации должна быть не менее удвоенной частоты наивысшей гармоники (частотной составляющей) исходного звукового сигнала. Поскольку человек способен слышать звуки в частотном диапазоне от 20 Гц до 20 кГц, максимальная частота дискретизации исходного звукового сигнала должна составлять не менее 40 кГц, т. е. отсчеты требуется проводить 40 000 раз в секунду. В связи с этим в большинстве современных звуковых систем ПК максимальная частота дискретизации звукового сигнала составляет 44,1 или 48 кГц.

Кодирование заключается в преобразовании в цифровой код квантованного сигнала. При этом точность измерения при квантовании зависит от числа разрядов кодового слова. Если значения амплитуды записать с помощью двоичных чисел и задать длину кодового слова N разрядов, число возможных значений кодовых слов будет равно 2N. Столько же может быть и уровней квантования амплитуды отсчета.

МОДУЛЬ СИНТЕЗАТОРАЭлектромузыкальный цифровой синтезатор звуковой системы позволяет генерировать практически любые звуки, в том числе и звучание реальных музыкальных инструментов. Принцип действия синтезатора иллюстрирует рис. 5.5. Синтезирование представляет собой процесс воссоздания структуры музыкального тона (ноты). Звуковой сигнал любого музыкального инструмента имеет несколько временных фаз.

Для каждого музыкального инструмента вид сигнала будет своеобразным, но в нем можно выделить три фазы: атаку, поддержку и затухание. Совокупность этих фаз называется амплитудной огибающей, форма которой зависит от типа музыкального инструмента. Длительность атаки для разных музыкальных инструментов изменяется от единиц до нескольких десятков или даже до сотен миллисекунд. В фазе, называемой поддержкой, амплитуда сигнала почти не изменяется, а высота музыкального тона формируется во время поддержки. Последней фазе, затуханию, соответствует участок достаточно быстрого уменьшения амплитуды сигнала.

В современных синтезаторах звук создается следующим образом. Цифровое устройство, использующее один из методов синтеза, генерирует так называемый сигнал возбуждения с заданной высотой звука — ноту, которая должна иметь спектральные характеристики, максимально близкие к характеристикам имитируемого музыкального инструмента в фазе поддержки, как показано на рис. 5.5, б. Далее сигнал возбуждения подается на фильтр, имитирующий амплитудно-частотную характеристику реального музыкального инструмента. На другой вход фильтра подается сигнал амплитудной огибающей того же инструмента. Далее совокупность сигналов обрабатывается с целью получения специальных звуковых эффектов, например эха (реверберация), хорового исполнения (хорус).

МОДУЛЬ МИКШЕРАМодуль микшера звуковой карты выполняет: коммутацию (подключение/отключение) источников и приемников звуковых сигналов, а также регулирование, их уровня; микширование (смешивание) нескольких звуковых сигналов и регулирование уровня результирующего сигнала. К числу основных характеристик модуля микшера относятся: число микшируемых сигналов на канале воспроизведения; регулирование уровня сигнала в каждом микшируемом канале; регулирование уровня суммарного сигнала; выходная мощность усилителя; наличие разъемов для подключения внешних и внутренних приемников/источников звуковых сигналов. Источники и приемники звукового сигнала соединяются с модулем микшера через внешние или внутренние разъемы. Внешние разъемы звуковой системы: Joystick/MIDI — для подключения джойстика или MIDI-адаптера; М/с In — для подключения микрофона; Line In — линейный вход для подключения любых источников звуковых сигналов; Line Out — линейный выход для подключения любых приемников звуковых сигналов; Speaker — для подключения головных телефонов (наушников) или пассивной акустической системы. Программное управление микшером осуществляется либо средствами Windows, либо с помощью программы-микшера, поставляемой в комплекте с программным обеспечением звуковой карты. Стандарт Sound Blaster поддерживает приложения в виде игр для DOS, в которых звуковое сопровождение запрограммировано с ориентацией на звуковые карты семейства Sound Blaster. Стандарт Windows Sound System (WSS) фирмы Microsoft включает звуковую карту и пакет программ, ориентированный в основном на бизнес-приложения.

АКУСТИЧЕСКАЯ СИСТЕМААкустическая система (АС) непосредственно преобразует звуковой электрический сигнал в акустические колебания и является последним звеном звуковоспроизводящего тракта В состав АС, как правило, входят несколько звуковых колонок, каждая из которых может иметь один или несколько динамиков. Число колонок в АС зависит от числа компонентов, составляющих звуковой сигнал и образующих отдельные звуковые каналы.

Для воспроизведения низких и сверхнизких частот с высоким Качеством в АС помимо двух колонок используется третий звуковой агрегат — сабвуфер (Subwoofer).

Отличительная особенность АС для ПК — возможность наличия собственного встроенного усилителя мощности. АС со встроенным усилителем называется активной. Пассивная АС усилителя не имеет. Главное преимущество активной АС состоит в возможности подключения к линейному выходу звуковой карты. Питание активной АС осуществляется либо от батареек (аккумуляторов), либо от электрической сети через специальный адаптер, выполненный в виде отдельного внешнего блока или модуля питания, устанавливаемого в корпус одной из колонок.

С развитием технологий и стандартов 3D-звука распространение приобрели многоколоночные АС. Первые многоканальные акустические системы имели обозначение 4.0, в состав которых соответственно входят четыре колонки: две фронтальные и две тыловые. Подобная акустика дает неплохие эффекты в играх, создавая трехмерный звук.

Surround EX, как в кинотеатрах. Во многих качественных системах 5.1., 7.1 и 7.2 можно встретить звуковые процессоры, которые декодируют многоканальный звук в соответствии с определенными форматами: для акустики 5.1 — это Dolby Digital, DTS и Dolby prologic, а для 7.1 и 7.2 — Dolby Digital Surround EX и DTS Surround gX. Именно наличие этого компонента позволяет использовать компьютерную акустику для домашнего кинотеатра. Основные характеристики АС: полоса воспроизводимых частот; чувствительность; коэффициент гармоник; мощность.

Чувствительность звуковой колонки (Sensitivity) характеризуется звуковым давлением, которое она создает на расстоянии 1 м при подаче на ее вход электрического сигнала мощностью 1 Вт. В соответствии с требованиями стандартов чувствительность определяется как среднее звуковое давление в определенной полосе частот. Чем выше значение этой характеристики, тем лучше АС передает динамический диапазон музыкальной программы.

 

УСТРОЙСТВА ПОДГОТОВКИ И ВВОДА ИНФОРМАЦИИ КлавиатураДля обработки информации с помощью ПК пользователь должен ввести информацию в компьютер. Основными устройствами ввода данных и управления системой являются клавиатура, мышь, джойстик. Широкое распространение получили такие устройства ввода информации, как сканер, цифровая камера, дигитайзер, сенсорная панель. Клавиатура (Keyboard) является основным устройством ввода информации в ПК, хотя мышь все больше берет на себя выполнение функций управления. Принцип действия клавиатуры представлен на рис. 6.1, а. Основным элементом клавиатуры являются клавиши. Сигнал при нажатии клавиши регистрируется контроллером клавиатуры и передается в виде так называемого скэн-кода на материнскую плату. Скэн-код — это однобайтовое число, младшие 7 бит которого пред-ставляют идентификационный номер, присвоенный каждой клавише. На материнской плате ПК для подключения клавиатуры также используется специальный контроллер. Когда скэн-код поступает в контроллер клавиатуры, инициализируется аппаратное прерывание, процессор прекращает свою работу и выполняет процедуру, анализирующую скэн-код. Скэн-код трансформируется в код символа (так называемые коды ASCII). При этом обрабатывающая процедура сначала определяет установку клавишей и переключателей, чтобы правильно получить вводимый код (например, «ф» или «Ф»). Затем введенный код помещается в буфер клавиатуры, представляющий собой область памяти, способную запомнить до 15 вводимых символов. Контроллер кла-виатуры выполняет функции самоконтроля в процессе загрузки системы. Процесс самоконтроля при загрузке отображается однократным миганием трех индикаторов клавиатуры.

Оптико-механическая мышьсостоит из следующих основных элементов. В нижней плоскости корпуса мыши находится отверстие, которое открывается поворотом пластмассовой шайбы. Под шайбой находится шарик диаметром 1,5...2 см, изготовленный из металла с резиновым покрытием (рис. 6.2). В непосредственном контакте с шариком находятся валики. Причем только один из валиков служит для управления шариком, а два других валика регистрируют механические передвижения

мыши. При перемещении мыши по коврику шарик приходит в движение и вращает соприкасающиеся с ним валики. Оси вращения валиков взаимно-перпендикулярны. На этих осях установлены диски с прорезями, которые вращаются между двумя пластмассовыми цоколями. На одном цоколе находится источник света, а на другом — фоточувствительный элемент (фотодиод, фоторезистор или фототранзистор). С помо-щью такого фотодатчика растрового типа точно определяется относительное перемещение мыши. С помощью двух растровых датчиков устанавливается направление перемещения мыши (по последовательности освещения фоточувствительных элементов) и скорость перемещения в зависимости от частоты импульсов. Импульсы с выхода фоточувствительных элементов при помощи микроконтроллера преобразуются в совместимые с ПК данные и передаются на материнскую плату. Оптическая мышь функционирует аналогично оптико-механической мыши, отличаясь тем, что ее перемещение регистрируется оптическим датчиком. Такой способ регистрации перемещения заключается в том, что оптическая мышь посылает луч на специальный коврик.

Отраженный от коврика луч поступает на оптоэлектронное устройство, расположенное в корпусе мыши. Направление движения мыши определяется типом полученного сигнала. Конструктивно оптическая мышь устроена так, что внутри ее корпуса расположены две пары светодиододов и фотоэлементов. Один светодиод обычно излучает в красной области спектра, а другой — в инфракрасной. При этом каждый фотоэлемент регистрирует отраженный от коврика луч в своей области спектра. Коврик для перемещения мыши серебристого цвета состоит из цветных горизонтальных (синих) и вертикальных (серых) линий. Если мышь находится между линиями сетки, то от серебристой поверхности одинаково отражаются лучи красного и инфракрасного светодиодов. При перемещении мыши на синюю линию излучение красного света поглащается и сигнала с соответствующего фотоэлемента не поступает. Аналогично не поступает сигнал с фотоэлемента, регистрирующего отраженный сигнал в инфракрасной линии спектра, при перемещении мыши на серую линию. При перемещении мыши по коврику фотоэлементы поочередно вырабатывают сигналы, отражающие перемещение в двух координатах. Эти сигналы передаются в ПК, где с помощью драйвера преобразуются с целью управления движением курсора на экране. Преимуществами оптической мыши являются высокая точность определения позиционирования и надежность. По принципу подключения к компьютеру мыши можно подразделить на проводные, связанные с компьютером электрическим кабелем («хвостатые» мыши),и бесконтактные (беспроводные, «бесхвостые»). Беспроводные мыши — это инфра-красные или радиомыши.

Трэкбол (Trackball) по конструкции напоминает мышь, у которой шар расположен не внутри корпуса, а на верхней его части. Принцип действия и способ передачи данных трэкбола такой же, как у мыши. Обычно трэкбол использует оптико-механический принцип регистрации положения шарика. Большинство трэкболов управляются через последовательный порт, причем назначение выводов аналогично разъему мыши. Основные отличия трэкбола от мыши в том, что трэкбол обладает стабильностью за счет тяжелого корпуса и не требует специальной площадки для движения. Для пользователей первых поколений ПК типа Notebook и Laptop предлагались внешние или встроенные трэкболы. ДжойстикДжойстик (joy stick) — устройство ввода в области компьютерных игр. Создавался джойстик для использования на специальных военных тренажерах и обычно имитировал устройство управления какой-либо военной техникой. Цифровые джойстики, как правило, применяются в игровых приставках и в игровых компьютерах. Любой джойстик состоит из двух элементов: координатной части — ручки или руля, перемещение которой изменяет положение виртуального объекта в пространстве, и функциональных кнопок. Число кнопок может быть от трех до восьми, и большинству из них, кроме главной кнопки «Огонь» или гашетки, можно в зависимости от игры присваивать разные значения: смена оружия, коробка скоростей и т. д.

СКАНЕРЫСканер (Scanner) — устройство ввода в ЭВМ информации в виде текстов, рисунков, слайдов, фотографий на плоских носителях, а также изображения объемных объектов небольших размеров. Метод сканирования использовался при передаче фотографических изображений по телеграфу еще в 1850 г. Первый черно-белый сканер был создан в 1863 г., а цветной — в 1937 г. Принцип действия и классификация сканеров Сканер как оптоэлектронный прибор включает следующие функциональные компоненты: датчик, содержащий источник света, оптическую систему, фотоприемник, механизм перемещения датчика (или оптической системы) относительно оригинала. Электронное устройство обеспечивает преобразование информации в цифровую форму. Сканирование представляет собой цифровое кодирование изображения, заключающееся в преобразовании аналогового сигнала яркости в цифровую форму.

В процессе сканирования оригинал освещается источником света. Светлые области оригинала отражают больше света, чем темные. Отраженный (или преломленный) свет оптической системой направляется на фотоприемник, который преобразует интенсивность принимаемого света в соответствующее значение напряжения. Аналоговый сигнал преобразуется в цифровой для дальнейшей обработки с помощью ПК.

Типы сканеровВ зависимости от способа перемещения фоточувствительного элемента сканера и носителя изображения относительно друг друга сканеры подразделяются на две основных группы — настольные (Desktop) и ручные (Hand-held). К числу настольных сканеров относятся планшетные (Flatbed), роликовые (Sheet-feed), барабанные (Drum) и проекционные (Overhead/Camera) сканеры. Планшетные сканеры, или сканеры плоскостного типа, используются для ввода графики и текста с носителей формата А4 или A3. Однако при этом планшетные сканеры — наиболее популярные устройства ввода текстовой и графической информации. Они обеспечивают необходимое качество изображений, используемых как в деловой корреспонденции, так и в высокохудожественных изданиях

Сканирующий элемент на основе технологии VAROS дополнен стеклянной пластиной, расположенной между линзами и ПЗС. Вначале осуществляется сканирование аналогично традиционной технологии. Затем стеклянная пластина поворачивается, и процесс сканирования повторяется. Подобное устройство дает сканеру возможность считать данные со смещением в полпиксела. Программное обеспечение, объединяющее результаты первого и второго этапов сканирования, позволяет получить вдвое больше данных, а реальное разрешение возрастает вдвое.

Характеристики сканеров При выборе типа и модели сканера следует принимать во внимание следующие основные характеристики. Разрешающая способность определяется плотностью расположения распознаваемых точек и выражается в точках на дюйм (dpi dot per inch). Сканеры имеют два параметра разрешающей способности: оптическое разрешение и программное. Оптическое разрешение — показатель первичного сканирования. Программными методами можно в дальнейшем повысить разрешение. Например, оптическое разрешение сканера может быть 300х600 dpi, а программное — до 4800х4800 dpi. Оптическое разрешение имеет более важное значение для пользователя. Оптическое разрешение зависит от размера элемента ПЗС-датчика и характеризует плотность, с которой производится выборка информации в заданной области оригинала. Область сканирования — максимальный размер оригинала для данного сканера. Метод сканирования определяет одно- или трехпроходный способ считывания информации в цветных сканерах. Скорость сканирования — число страниц черно-белого оригинала, сканируемых в минуту с максимальным оптическим разрешением сканера. Разрядность сканера измеряется в битах и определяет то количество информации, которое необходимо для оцифровки каждой точки изображения, а также количество цветов, которое способен распознать сканер. 24 бит соответствуют 16,7 млн цветов, а 30 бит — миллиарду. Как правило, человеческий глаз не в состоянии отличить 16-битный цвет от 24-битного.

ЦИФРОВЫЕ КАМЕРЫЦифровая камера — устройство для фото- или видеосъемки, в котором изображение регистрируется на систему матриц и сохраняется в цифровом виде.

Цифровая фотокамера имеет не только внешнее, но и функциональное сходство с обычной фотокамерой, применяемой в галогенно-серебряной (пленочной) фотографии, и 21

содержит в светонепроницаемом корпусе матрицу, объектив, затвор, видоискатель, процессор, карту памяти

Web-КАМЕРЫWeb-камера представляет собой цифровое устройство, производящее видеосъемку, оцифровку, сжатие и передачу по компьютерной сети видеоизображения. Информация о Web-камере как новом периферийном устройстве ПК появилась в печати в 1992 г. В настоящее время они стали вполне штатными техническими средствами информационно-коммуникационных технологий.

ДИГИТАЙЗЕРЫ И ЭЛЕКТРОННЫЕ ПЛАНШЕТЫДигитайзер (Digitazer), шли графический планшет, —устройство для оцифровки графических изображений, позволяющее преобразовывать в векторный формат изображение, полученное в результате движения руки оператора. Дигитайзеры используются в системах автоматизированного проектирования (САПР) для ввода в компьютер графической информации в виде чертежей и рисунков: проектировщик водит пером-курсором по планшету, а изображение фиксируется в виде графического файла.

СЕНСОРНЫЕ УСТРОЙСТВА ВВОДАСенсорное устройство ввода основано на введении информации в ПК при прикосновении к экрану. Основными компонентами сенсорного экрана являются: сенсорная панель, выполняющая функцию датчика, генерирующего сигналы, указывающие, к какому участку произведено прикосновение; контроллер, обрабатывающий сигналы датчика и транслирующий их в данные, которые передаются в процессор ПК через интерфейсы RS232 или USB; программный драйвер, обеспечивающий интерфейс с операционной системой ПК. В этих устройствах используются четыре базовые сенсорные технологии — резистивная, емкостная, акустическая и инфракрасная