Линии передач. Классификация с примерами.

Полное внутреннее отражение.

Внутреннее отражение — явление отражения электромагнитных или звуковых волн от границы раздела двух сред при условии, что волна падает из среды, где скорость её распространения меньше (в случае световых лучей это соответствует большему показателю преломления).

Неполное внутреннее отражение — внутреннее отражение, при условии, что угол падения меньше критического угла. В этом случае луч раздваивается на преломлённый и отражённый.

Полное внутреннее отражение — внутреннее отражение, при условии, что угол падения превосходит некоторый критический угол. При этом падающая волна отражается полностью, и значение коэффициента отражения превосходит его самые большие значения для полированных поверхностей. Коэффициент отражения при полном внутреннем отражении не зависит от длины волны.

Если угол падения невелик, то часть поля отражается, а часть преломляется. Однако, при переходе из более плотной среды в менее плотную , при некотором угле падения синус угла преломления по закону преломления должен быть больше единицы, что невозможно. Поэтому в таком случае преломления не происходит, а происходит полное внутреннее отражение.

Условие полного внутреннего отражения:

 

Явление ПВО широко используется в оптической технике благодаря тому, что при ПВО отражается 100% энергии, то есть потерь энергии нет. Таким образом, ПВО позволяет решить задачу полного отражения света: в зависимости от угла падения луч или почти полностью проходит, или почти полностью отражается.

Нарушенное полное внутреннее отражение (НПВО), которое возникает при оптическом контакте границы раздела со средой, используется в спектроскопии.

http://aco.ifmo.ru/el_books/basics_optics/glava-3/glava-3-1.html

 

 

Волноводы.

Волновод — искусственный или естественный направляющий канал, в котором может распространяться волна. При этом поток мощности, переносимый волной, сосредоточен внутри этого канала или в области пространства, непосредственно примыкающей к каналу.

По природе распространяющихся волн различают электромагнитные и акустические волноводы. Частным случаем первых являются оптоволоконные линии передачи. Наиболее часто под термином «волновод» подразумеваются металлические трубки, предназначенные для передачи энергии электромагнитных волн диапазонов СВЧ и КВЧ. Такой волновод — линия передачи, имеющая одну или несколько проводящих поверхностей, с поперечным сечением в виде замкнутого проводящего контура, охватывающего область распространения электромагнитной энергии.

 

Экранированные волноводы имеют хорошо отражающие стенки для распространяющейся в нем волны, благодаря чему поток мощности волны сосредоточен внутри волновода. Как правило, такие волноводы выполнены в виде полых или заполненных средой со специально подобранными параметрами трубок. Поперечное сечение этих трубок имеет форму окружности, эллипса, прямоугольника. Поскольку волна отражается от стенок экранированного волновода, то в поперечном направлении возникает стоячая волна с определенным составом мод. (что такое мод - хз, что-то связанное с нормальными волнами)

 

В неэкранированных волноводах локализация поля обычно обусловлена явлением полного внутреннего отражения от границ раздела двух сред (в волноводах диэлектрических и оптоволоконных световодах), либо от областей с плавно изменяющимися параметрами среды (например, ионосферный волновод, атмосферный волновод, подводный звуковой канал, градиентное оптоволокно). Поле локализуется преимущественно внутри специально предназначенной для этого области поперечного сечения волновода и быстро убывает за пределами этой области. Благодаря этому волна канализируется в волноводе.

 

 

Радиоволновод (линия передачи) характеризуется тем, что его поперечные размеры соизмеримы с длинами передаваемых волн. Обычно представляет собой металлическую трубу (металлический волновод прямоугольного, круглого, П-образного, H-образного и др. видов сечений) или диэлектрический стержень, внутри которых вдоль их продольных осей распространяются радиоволны в результате многократных отражений от внутренних поверхностей стенок и интерференции отраженных волн.

 

 

Объемные резонаторы.

Объёмный резонатор — устройство, основанное на явлении резонанса, в котором вследствие граничных условий возможно существование на определенных длинах волн добротных колебаний в виде бегущей или стоячей волны.

Добротность — параметр колебательной системы, определяющий ширину резонанса и характеризующий, во сколько раз запасы энергии в системе больше, чем потери энергии за время изменения фазы на 1 радиан. Обозначается символом Q.

Переход от обычного контура (а) к объемному резонатору (в).

 

На рисунке показан переход от контура с сосредоточенными параметрами к объемному резонатору. Пусть контур обычного типа имеет емкость в виде конденсатора С, образованного двумя круглыми пластинками, и индуктивность в виде прямоугольного витка L1 (рис. а). Как известно, качество такого контура на свч получается весьма низким. Если подключить к конденсатору параллельно несколько витков (рис. б), то индуктивность и активное сопротивление уменьшается. В результате этого повысятся собственная частота контура fо и его добротность Q.

Например, если включить 25 витков, то индуктивность уменьшится в 25 раз, а частота увеличится в 5 раз, так как:

характеристическое сопротивление контура уменьшится в 5 раз, что следует из формулы:

Поэтому качество контура, равное /r возрастет в 5 раз. Увеличивая число витков, присоединяемых к конденсатору С, придем к случаю, когда все витки сольются в одну общую замкнутую металлическую поверхность (рис. б). Если для этого надо N витков, то на основании приведенного выше примера можно считать, что резонансная частота и качество контура возрастут в (корень) из N раз.

 

Таким образом, колебательный контур превратился в закрытую металлическую коробку цилиндрической формы, представляющую собой объемный резонатор. При этом в действительности качество контура возрастает не в (корень) из N раз, а гораздо больше вследствие того, что замкнутая металлическая поверхность является хорошим экраном, и поэтому электромагнитное поле существует только внутри резонатора.

Объемный резонатор подобно коаксиальной резонансной линии представляет собой экранированную колебательную систему, в которой отсутствуют потери на излучение и нет внешнего поля, способного создать паразитные связи с другими цепями. Кроме того, в объемном резонаторе нет потерь в твердых диэлектриках и активное сопротивление стенок резонатора очень мало благодаря их большой поверхности. В результате всего этого, если от резонатора не отбирается энергия, то его качество может доходить до десятков тысяч. Удобно также то, что наружная поверхность объемного резонатора имеет нулевой потенциал и не несет на себе токов. Поэтому объемные резонаторы могут монтироваться без изоляции.

Поле в цилиндрическом объемном резонаторе.

Статья целиком:http://bourabai.ru/toe/radio07.htm

{\displaystyle Q}

 

Линии передач. Классификация с примерами.

Радиоволновод (линия передачи) характеризуется тем, что его поперечные размеры соизмеримы с длинами передаваемых волн.

Либо:

https://ru.wikipedia.org/wiki/%D0%9B%D0%B8%D0%BD%D0%B8%D1%8F_%D0%BF%D0%B5%D1%80%D0%B5%D0%B4%D0%B0%D1%87%D0%B8 (линия передачи в википедии)

Полосковые линии.

Полосковые линии - линии передачи, содержащие проводники в виде одной или нескольких полосок, расположенных в воздухе (воздушные полосковые линии, рис. 1, а, б) либо нанесённых на диэлектрик (рис. 1, в - д), наз. подложкой. Иногда в качестве подложки применяют феррит или полупроводник. Воздушные полосковые линии чаще используют в диапазоне частот 1-100 МГц, а полосковые линии, нанесённые на диэлектрик,- до 100 ГГц. Наиб, распространены полосковые линии, у к-рых одна поверхность подложки полностью металлизирована (микрополосковые линии, рис. 1, в, г). Они обеспечивают простое соединение активных элементов интегральных схем (ИС) с подложкой через металлизиров. отверстия в ней; применяются вплоть до миллиметрового диапазона волн. В миллиметровом диапазоне чаще используются подвешенные (рис. 1, д, ж)и обращённая (рис. 1, е)линии.

Электрич. свойства полосковых линий характеризуются волновым сопротивлением коэф. замедления h (см. Замедляющая система)и коэф. затухания Подвешенные и обращенные полосковые линии отличаются от др. полосковых линий тем, что сторона подложки, противоположная полоскам, не металлизирована; они обладают меньшими потерями энергии в проводниках, чем микрополосковые линии, допускают передачу большей мощности. Волновые сопротивления и коэф. замедления этих линий зависят от расстоянии между диэлектриком и экранами, что используют для перестройки устройств на полосковых линиях и для выравнивания скоростей чётных и нечётных волн в связанных линиях (рис. 1, ж). Такое выравнивание необходимо для создания широкополосных направленных ответвителей. К полосковым линиям относятся копланарная (рис. 1,з) и щелевые (рис. 1,и) линии.

В полосковых линиях могут существовать разл. типы волн отличающиеся распределением поля и тока по ширине полоски. Их дисперсионные характеристики (сплошные линии) представлены на рис. 2. Осн. тип волны (кривая O) наз. квази-ТЕМ-волной, поскольку эта волна как и ТЕМ-волна. может распространяться в диапазоне длин волн поперечные компоненты эл -магн. поля в ней существенно больше, чем продольные (в ТЕМ-волне продольные компоненты поля отсутствуют; см. Волновод металлический), а при достаточно больших длинах волн и она описывается телеграфными уравнениями. Здесь и - относительные электрич. и магн. проницаемости материала подложки, W - ширина полоски, - толщина подложки. По мере уменьшения (роста частоты) коэф. замедления всех типов волн стремится к величине соответствующей волне, к-рая распространяется в среде, имеющей те же параметры, что и подложка полосковых линий. Рост замедления связан с тем, что по мере увеличения частоты эл--магн. поле сосредоточивается в диэлектрике. Наиб. быстрый рост замедления квази-ТЕМ-волны происходит вблизи частот, прп к-рых в подложке укладывается четверть волны а на ширине полоски - полволны Квази-ТЕМ-волна полностью определяется погонными индуктивностью L, ёмкостью С, сопротивлением проводника R, проводимостью подложки G. Через эти параметры определяются такие величины, как коэф. замедления (здесь с - скорость света в свободном пространстве), волновое сопротивление затухание Часто при = 1 в области частот для к-рой справедливы телеграфные ур-ния вместо коэф. замедления используют эфф. диэлектрич. проницаемость поскольку в этой области = где - погонная ёмкость полосковой линии в отсутствие подложки.

Ссылка: http://bourabai.ru/physics/2966.html

 

 

Коаксиальная линия.

Коаксиальный кабель (от лат. co — совместно и axis — ось, то есть «соосный»), также известный как коаксиал (от англ. coaxial), — электрический кабель, состоящий из расположенных соосно центрального проводника и экрана. Обычно служит для передачи высокочастотных сигналов. Предложен в 1855 году Вильямом Томсоном (Лордом Кельвином), запатентован в 1880 году британским физиком Оливером Хевисайдом.

Коаксиальный кабель (см. рисунок) состоит из:

4 (A) — оболочки (служит для изоляции и защиты от внешних воздействий) из светостабилизированного (то есть устойчивого к ультрафиолетовому излучению солнца) полиэтилена, поливинилхлорида, повива фторопластовой ленты или иного изоляционного материала;
3 (B) — внешнего проводника (экрана) в виде оплетки, фольги, покрытой слоем алюминия пленки и их комбинаций, а также гофрированной трубки, повива металлических лент и др. из меди, медного или алюминиевого сплава;
2 (C) — изоляции, выполненной в виде сплошного (полиэтилен, вспененный полиэтилен, сплошной фторопласт, фторопластовая лента и т. п.) или полувоздушного (кордельно-трубчатый повив, шайбы и др.) диэлектрического заполнения, обеспечивающей постоянство взаимного расположения (соосность) внутреннего и внешнего проводников;
1 (D) — внутреннего проводника в виде одиночного прямолинейного (как на рисунке) или свитого в спираль провода, многожильного провода, трубки, выполняемых из меди, медного сплава, алюминиевого сплава, омеднённой стали, омеднённого алюминия, посеребрённой меди и т. п.

Благодаря совпадению осей обоих проводников у идеального коаксиального кабеля оба компонента электромагнитного поля полностью сосредоточены в пространстве между проводниками (в диэлектрической изоляции) и не выходят за пределы кабеля, что исключает потери электромагнитной энергии на излучение и защищает кабель от внешних электромагнитных наводок. В реальных кабелях ограниченные выход излучения наружу и чувствительность к наводкам обусловлены отклонениями геометрии от идеальности.

Основное назначение коаксиального кабеля — передача высокочастотного сигнала в различных областях техники:

    • системы связи;
    • вещательные сети;
    • компьютерные сети;
    • антенно-фидерные системы;
    • АСУ и другие производственные и научно-исследовательские технические системы;
    • системы дистанционного управления, измерения и контроля;
    • системы сигнализации и автоматики;
    • системы объективного контроля и видеонаблюдения;
    • каналы связи различных радиоэлектронных устройств мобильных объектов (судов, летательных аппаратов и др.);
    • внутриблочные и межблочные связи в составе радиоэлектронной аппаратуры;
    • каналы связи в бытовой и любительской технике;
    • военная техника и другие области специального применения.

Кроме канализации сигнала, отрезки кабеля могут использоваться и для других целей:

    • кабельные линии задержки;
    • четвертьволновые трансформаторы;
    • симметрирующие и согласующие устройства;
    • фильтры и формирователи импульса.

 

Формулы для определения параметров коаксиального кабеля:

Внутренний диаметр D экрана,диаметр d центральной жилы, диэлектрическая проницаемость материала внутренней изоляции.

Погонная ёмкость Ch (в системе СИ, результат выражен в фарадах на метр) вычисляется[9] по формуле ёмкости цилиндрического конденсатора:

где 0 — электрическая проницаемость эфира. Погонная индуктивность Lh (в системе СИ, результат выражен в генри на метр) вычисляется[9] по формуле

где 0 — магнитная проницаемость эфира, — относительная магнитная проницаемость изоляционного материала, которая во всех практически важных случаях близка к 1.

Волновое сопротивление коаксиального кабеля в системе СИ[10]:

(приближённое равенство справедливо в предположении, что = 1).

Скорость распространения сигнала в кабеле вычисляется по формуле

где c — скорость света.

Предельное электрическое напряжение, передаваемое коаксиальным кабелем, определяется электрической прочностью S изолятора (в вольтах на метр).

 

Направленные ответвители.





 


Мостовые устройства СВЧ.