Методы и средства защиты информации

Выделяют два подхода к обеспечению ИБ:

фрагментарный -- направлен на противодействие четко определенным угрозам в заданных условиях (например,средства управления доступом, автономные средства шифрования, специализированные антивирусные программы и т.п.). Его достоинством является высокая избирательность к конкретной угрозе. Существенным недостатком — отсутствие единой защищенной среды обработки информации, небольшое видоизменение угрозы ведет к потере эффективности защиты;

комплексный — ориентирован на создание защищенной среды обработки информации, объединяющей в единый комплекс разнородные меры противодействия угрозам, что позволяет гарантировать определенный уровень безопасности и является несомненным достоинством комплексного подхода. К недостаткам этого подхода относят: ограничения на свободу действий пользователей, чувствительность к ошибкам установки и настройки средств защиты, сложность управления. Данный подход использует большинство госу­дарственных и крупных коммерческих предприятий и учреждений.

Защиту информации следует рассматривать как регулярный процесс, осуществляемый путем комплексного использования технических, программных средств и организационных мероприятий на всех этапах разработки, испытаний и эксплуатации ИС. Требования по защите, предъявляемые к информационной системе, должны рассматриваться как часть общих функциональных требований к ней. В мировой практике используется понятие комплексная система защиты — совокупность законодательных, организационных и технических мер, направленных на выявление, отражение и ликвидацию различных видов угроз безопасности.

Комплексная информационная безопасность — такое состояние условий функционирования человека, объектов, технических средств и систем, при котором они надежно защищены от всех возможных видов угроз в ходе непрерывно­го процесса подготовки, хранения, передачи и обработки информации.

Корпоративные проекты информационной безопасности разрабатываются при объединении различных ИС и их компонент, подсистем связи, подсистем обеспечения безопасности в единую информационную систему с общими техническими средствами, каналами связи, ПО и базами данных, что предполагает обязательную непрерывность процесса обеспечения безопасности как во времени (в течение всей жизни ИС), так и в пространстве (по всему технологическому циклу деятельности) с обязательным учетом всех возможных видов угроз.

По какой бы технологии не строилась комплексная система информационной безопасности, требуется решение ряда сложных разноплановых частных задач в их тесной взаимосвязи (принцип системности и комплексности). Наиболее очевидными из них являются задачи разграничения доступа к информации, ее технического и криптографического «закрытия», устранение «паразитных» излучений технических средств, технической и физической укрепленности объектов, охраны и оснащения их тревожной сигнализацией. Стандартный набор средств защиты информации в составе современной ИС обычно содержит средства, реализующие методы программно-технической защиты информации.

Современные комплексные системы защиты осуществля­ют полный спектр управления всеми процессами, происхо­дящими в ИС. Они позволяют:

• собирать информацию со всех устройств идентификации и контроля, обрабатывать ее и управлять исполнительными устройствами;

• собирать и обрабатывать информацию с оборудования охранных систем сигнализации, систем видеонаблюдения, пожаротушения, вентиляции, энергосбережения и др.;

• создавать журналы учета состояния этих систем и происхождения изменений, демонстрировать оператору состояние систем и аварийные ситуации;

• контролировать состояние всей структуры в режиме реального времени при подключении информационных каналов, связывающих главный объект с филиалами или другими объектами.

Для обеспечения ИБ используются следующие методы: законодательные (законы, нормативные акты, стандарты и т.п.); административно-организационные (действия общего характера, предпринимаемые руководством организации,- и конкретные меры безопасности, направленные на работу с людьми); программно-технические.

К законодательным методам относят комплекс мер, направленных на создание и поддержание в обществе нега­тивного (в том числе карательного) отношения к нарушени­ям и нарушителям информационной безопасности.

Административно-организационные методы. — администрация организации должна сознавать необходимость поддержания режима безопасности и выделять на эти цели соответствующие ресурсы; основой защиты является поли­тика безопасности и комплекс организационных мер (управление персоналом, физическая защита, поддержание работоспособности, реагирование на нарушения режима безопасности, планирование восстановительных работ). В любой организации должен существовать набор регламентов, определяющих действия персонала в соответствующих ситуациях .

Программно-технические методы и средства:

· защищенные виртуальные частные сети для защиты информации, передаваемой по открытым каналам связи;

· межсетевые экраны для защиты корпоративной сети от внешних угроз при подключении к общедоступным сетям связи;

· управление доступом на уровне пользователей и защита от несанкционированного доступа к информации;

· гарантированная идентификация пользователей путем применения токенов (смарт-карты, touch-memory, ключи для USB-портов и т.п.) и других средств аутентификации;

· защита информации на файловом уровне (шифрование файлов и каталогов) для обеспечения ее надежного хранения;

· защита от вирусов с использованием специализированных комплексов антивирусной профилактики и защиты;

· обнаружение вторжений и активного исследования защищенности информационных ресурсов;

· криптографическое преобразование данных для обеспечения целостности, подлинности и конфиденциальности информации.

В настоящее время для организации защищенных VPN-каналов широко используется комплекс стандартов сети Интернет — IPSec (IP Security), поддержка которого является обязательным условием для перспективных VPN-продуктов. Средства VPN предприятия могут эффективно поддерживать защищенные каналы трех типов: с удаленными и мобильными сотрудниками (защищенный удаленный доступ), сетями филиалов предприятий (защита intranet), сетями предприятий-партнеров (защита extranet).

Для защиты VPN применяются межсетевые экраны, которые реализуют следующую схему доступа:

• доступ контролируется в одной точке, располагающейся на пути соединения внутренней сети с сетью Интернет или другой публичной сетью, являющейся источником потенциальных угроз;

• все субъекты доступа делятся на группы по IP-адресам (внутренние и внешние пользователи); внешним пользователям разрешается для доступа к внутренним ресурсам сети использовать один-два сервиса, например электронную почту, а трафик остальных сервисов отсекается.

Применение нескольких межсетевых экранов в пределах одной внутренней сети требует организации их скоординированной работы на основе единой политики доступа, что позволяет корректно обрабатывать пакеты пользователей независимо от того, через какую точку доступа проходит их маршрут.

При предоставлении информации в сети для гарантированной идентификации пользователей необходим специаль­ный механизм, состоящий из следующих процедур:

· идентификация — распознавание пользователя по его идентификатору (имени), который пользователь сообщает сети по запросу, сеть проверяет его наличие в своей базе данных;

· аутентификация — проверка подлинности заявленного пользователя, которая позволяет достоверно убедиться, что пользователь именно тот, кем себя объявляет (пароль);

· авторизация — процедура предоставления пользователю определенных полномочий и ресурсов сети, т.е. устанавливается сфера действия пользователя и доступные ему ресурсы.

Эффективным средством повышения надежности защиты данных на основе гарантированной идентификации пользователя являются электронные токены, которые хранят персональные данные пользователя системы.

Антивирусная защита должна устанавливаться в узлах, на которых информация хранится, обрабатывается и переда­ется в открытом виде.

Постоянные изменения ИС (реконфигурация программных средств, подключение новых рабочих станций и т.п.) могут привести к появлению новых угроз и уязвимых мест в системе защиты. В связи с этим особенно важно своевременное их выявление и внесение изменений в соответствующие настройки системы информационной безопасности, для чего используются средства обнаружения вторжений, которые дополняют защитные функции межсетевых экра­нов. Межсетевые экраны пытаются отсечь потенциально опасный трафик и не пропустить его в защищаемые сегменты, в то время как средства обнаружения вторжений анализируют результирующий трафик в защищаемых сегментах и выявляют атаки на ресурсы сети или потенциально опасные действия и могут использоваться в незащищенных сегментах, например перед межсетевым экраном, для получения общей картины об атаках, которым подвергается сеть извне.

Особую роль в программно-технических методах защиты информации играют криптографические преобразования данных и электронная цифровая подпись.

Криптографический алгоритм, или шифр, — это математическая формула, описывающая процессы зашифрования и расшифрования. Для того чтобы зашифровать открытый текст, криптоалгоритм работает в сочетании с ключом — словом, числом или фразой. Одно и то же сообщение одним алгоритмом, но с разными ключами будет преобразовываться в разный шифротекст. Защищенность шифротекста целиком зависит от стойкости криптоалгоритма и секретности ключа.

В традиционной криптографии один и тот же ключ ис­пользуется как для зашифрования, так и для расшифрования данных (рис. 7.2). Такой ключ называется симметричным ключом (закрытым). Data Encryption Standart (DES) — пример симметричного алгоритма, широко применявшегося на Западе с 70-х гг. XX в. в банковской и коммерческой сферах. Алгоритм шифрования был реализован в виде интег­ральной схемы с длиной ключа в 64 бита. В настоящее время стандарт DES сменяется стандартом Advanced Encryption Standard (AES). где длина ключа до 256 битов.

Симметричное шифрование обеспечивает скорость выполнения криптографических операций, но имеет два существенных недостатка, во-первых, большое количество необходимых ключей (каждому пользователю отдельный ключ); во-вторых, сложности передачи закрытого ключа.

Для установления шифрованной связи с помощью симметричного алгоритма отправителю и получателю нужно предварительно согласовать ключ и держать его в тайне. Если они находятся в географически удаленных местах, то должны прибегнуть к помощи доверенного посредника, чтобы избежать компрометации ключа в период транспортиров­ки. Злоумышленник, перехвативший ключ, сможет читать, изменять и подделывать любую информацию, зашифрованную или заверенную этим ключом.

Проблема управления ключами была решена криптографией с открытым ключом, или асимметричным, концепция которой была предложена в 1975 г. В этой схеме применяется пара ключей; открытый, который зашифровывает дан­ные, и соответствующий ему закрытый — их расшифровывает. Тот, кто зашифровывает данные, распространяет свой открытый ключ по всему свету, в то время как закрытый держит в тайне. Любой человек с копией открытого ключа может зашифровать данные, но прочитать данные сможет только тот, у кого есть закрытый ключ (рис. 7.3).

Хотя открытый и закрытый ключ математически связаны, однако вычисление закрытого ключа из открытого практически невыполнимо.

Асимметричное шифрование позволяет людям, не име­ющим договоренности о безопасности, обмениваться секретными сообщениями. Необходимость отправителю и получателю согласовывать тайный ключ по специальному защищенному каналу полностью отпала. Все коммуникации затрагивают только открытые ключи, тогда как закрытые хранятся в безопасности. Примерами криптосистем с открытым ключом являются Elgamal, RSA, Diffie-Hellman, DSA и др.

Использование криптосистем с открытым ключом пре­доставляет возможность создания электронных цифровых подписей (ЭЦП). Электронная цифровая подпись — это реквизит электронного документа, предназначенный для удостоверения источника данных и защиты электронного документа от подделки. Цифровая подпись позволяет получателю сообщения убедиться в аутентичности источника информации (в том, кто является автором информации), проверить, была ли информация изменена (искажена), пока находилась в пути. Таким образом, цифровая подпись является средством аутентификации и контроля целостности данных и служит той же цели, что печать или собственноручный автограф на бумажном листе. Сравнительные характеристики Цифровой и обычной подписей приведены в табл. 7.3.

Простой способ генерации цифровых подписей показан на рис. 7.4.

Вместо шифрования информации открытым ключом информация шифруется собственным закрытым с одновременной генерацией открытого ключа. Если информация может быть расшифрована открытым ключом автора документа, то этим подтверждается авторство. В противном случае подпись считается поддельной

Для того чтобы не зашифровывать весь текст и затем пересылать его в зашифрованном виде, при формировании ЭЦП используется новый компонент — односторонняя хэш-функция, которая выбирает фрагмент произвольной длины, называемый прообразом (сообщение любого размера) и генерирует строго зависящий от прообраза код фиксированной длины. Хэш-функция гарантирует, что если информация будет каким-либо образом изменена, то в результате получится совершенно иное хэш-значение (дайджест сообщения). Полученный дайджест зашифровывается закрытым ключом отправителя и представляет собой электронную подпись, которая может прикрепляться к документу и передаваться вместе с исходным сообщением или же передаваться отдельно от него. При получении сообщения заново вычисляется дайджест подписанных данных, расшифровывается ЭЦП открытым ключом отправителя, тем самым сверяется целостность данных и их источник. Если вычисленный и полученный с сообщением дайджесты совпадают, то информация после подписания не была изменена.

Если в процессе формирования ЭЦП применяется стойкая односторонняя хэш-функция, то нет никакого способа взять чью-либо подпись с одного документа и прикрепить ее к другому или же любым образом изменить подписанное сообщение. Малейшее изменение в подписанном документе будет обнаружено в процессе сверки ЭЦП (рис. 7.5).

 

Цифровой сертификат ключа — это информация, прикрепленная к открытому ключу пользователя и дающая возможность другим установить, является ли ключ подлинным и верным. Цифровые сертификаты ключей упрощают задачу определения принадлежности открытых ключей предпола­гаемым владельцам и аналогичны физическому сертификату (паспорту, водительскому удостоверению и пр.). Они нужны для того, чтобы сделать невозможной попытку выдать ключ одного человека за ключ другого. ЭЦП на сертификате указывает, что сведения сертификата были заверены доверенным третьим лицом или организацией.

Система сертификации может реализовываться в виде хранилища-депозитария, называемого сервером сертификатов (сервером-депозитарием открытых ключей), или инфраструктурой открытых ключей, предполагающего дополнительные возможности администрирования ключей.

Сервер-депозитарий — это сетевая база данных, санкционирующая пользователей на включение и извлечение из нее цифровых сертификатов. Он может выполнять некоторые функции администрирования, необходимые организации для поддержания политики безопасности, например хранить только ключи, удовлетворяющие определенным критериям.

В настоящее время создаются Центры сертификации (ЦС), которые издают цифровые сертификаты и подписывают их своим закрытым ключом. Используя открытый ключ ЦС, любой пользователь, желающий проверить подлинность конкретного сертификата, сверяет подпись Центра сертификации и удостоверяется в целостности содержащейся в сертификате информации и, что более важно, во взаимосвязности сведений сертификата и открытого ключа.

По мнению многих специалистов, будущее системы защиты — это централизованное управление и единственные «точки входа» для пользователей. В таких централизованных системах администратор может управлять доступом и проверкой полномочий из одного пункта, а сервер санкционирования или единый сервер паролей должен содержать не только БД паролей, но и правила ограничения прав доступа.