Основные технические данные обрушивающей машины А1-МЦП

Производительность по семенам - не менее 200 т/сут 200

Содержание в рушанке из семян высокомасличного подсолнечника:

целяка и недоруша – не выше 25% до 25

масличной пыли – не выше 10 % до 10

сечки – не выше 12 : до 12

Номинальная установленная мощность - 15 кВт

Габаритные размеры: 15 Габаритные размеры, мм:

Длина – 1430 мм 1430

Ширина – 850 мм 850

Высота- не более 1310 мм 1310

Масса - не более 550 кг 550

 

После обрушивания рушанка поступает на разделение по фрак­циям: ядро, оболочка, целые семена, недоруш. Разделение рушанки основано на различии размеров и аэродинамических свойств фракций. Лузга оказывает значительно большее сопротивление воздушному потоку, чем ядро, поэтому сначала получают фрак­ции рушанки, содержащие частицы лузги и ядра одного размера, а затем в воздушном потоке они разделяются на лузгу и ядро.

В настоящее время получили распространение машины, раз­деляющие рушанку семян подсолнечника вначале по размерам на ситах, а затем в воздушном потоке по аэродинамическим свой­ствам: М1С-50, М2С-50, Р1-МСТ.

Аспирационная семеновейка М2С-50 состоит из двух машин: рассева 7 с круговым поступательным движением сит и вейки25, расположенных одна над другой и соединенных между собой гибкими рукавами.

Рис.6. Аспирационная семеновейка М2С-50:

1 – электродвигатель, 2 – вентилятор, 3 – шиберный механизм, 4 – поддоны, 5 – короб, 6 – приёмная коробка, 7 – рассев, 8 – трос, 9 – приводное устройство, 10 – выдвижные сита, 11 – гибкий рукав, 12 – питающее устройство, 13 – подвижная заслонка, 14 – полочки-жалюзи, 15,16,18,24 – конусы, 17,19,23 – автоматические клапаны, 20 – решётка, 21,22 – перегородки, 25 - вейка

 

Рассев предназначен для разделения рушанки на несколько фракций и представляет собой деревянный короб 5, на наклонно расположенных (под углом 3...5°) направляющих которого нахо­дятся три яруса выдвижных сит. Продольная вертикальная перего­родка делит короб на две половины. Под каждым ситом располо­жены поддоны 4с различными наклонами: на начальных участках сит наклон поддонов противоположен наклону сит, а на конечных участках сит он совпадает с наклоном сит. Поддоны предназначе­ны для сбора и транспортирования частиц, прошедших через сита. В рассеве применены штампованные сита с круглыми отверстия­ми. Размеры отверстий изменяются от яруса к ярусу, а также раз­личаются на начальных и конечных участках сит одного яруса.

Для улучшения просеивания на ситах устанавливают ворошители.

Рассев подвешивают на четырех тросах 8 (см. рис. 10.7) к пото­лочной раме над вейкой. Над рассевом установлена приемная ко­робка 6 с гибким рукавом для подачи рушанки, а под рассевом с противоположной стороны закреплены шесть гибких рукавов для передачи полученных в рассеве фракций в каналы аспирационной вейки.

Приводное устройство 9, установленное в центре рассева на его верхней крышке, состоит из вертикального вала, двух балансиров и шкива. В балансирах эксцентрично закреплены сменные грузы, что позволяет, изменяя массу грузов, регулировать амплитуду кругового поступательного движения рассева. Электродвигатель смонтирован на кронштейне, укрепленном на крышке корпуса рассева. От электродвигателя через клиноременную передачу вра­щательное движение передается вертикальному валу вместе с ба­лансирами.

Аспирационная вейка представляет собой прямоугольный деревянный корпус, разделенный продольными перегородками на шесть каналов. Питающее устройство12в виде рифленого валика и подвижной заслонки13 размещено в верхней части корпуса под патрубками, по которым пересыпаются из рассева фракции рушанки на разделение в каналы вейки. Заслонки изготовлены индивидуально для каждого канала, а валик общий на все кана­лы. Под питающим устройством расположено несколько наклон­ных полочек-жалюзи14, изготовленных из тонкой (толщиной 1 мм) листовой стали. Угол наклона полочек можно изменять при регулировании режима работы вейки.

В нижней части корпуса вейки расположены три конуса16, 18, 24 с автоматическими клапанами17, 19, 23. В нерабочем состоя­нии вейки клапаны-заслонки находятся в висячем положении и щели в вершинах конусов открыты. При включении вентилятора, который создает разрежение в корпусе вейки, клапаны-заслонки прижимаются к противоположным стенкам конусов и перекрыва­ют щели в вершинах конусов. По мере накопления в конусах рас­сортированных фракций рушанки возрастает давление на клапаны-заслонки. Когда это давление превышает статическое давле­ние разрежения, создаваемого вентилятором, клапан открывается и накопленные в конусах частицы рушанки высыпаются в распо­ложенные под ними транспортные шнеки. После освобождения конуса давлений становится меньше статического давления разре­жения и клапан-заслонка закрывается.

Скорость воздушного потока регулируют с помощью шиберно­го механизма 3, которым снабжен каждый из шести каналов вей­ки. Шиберы установлены в хвостовой части вейки непосредствен­но перед вентилятором, а штурвалы, регулирующие положение шиберов, вынесены на переднюю часть вейки, что позволяет регу­лировать скорость, наблюдая за процессом сепарирования на жалюзи вейки. Решетка20 и две перегородки21, 22, расположенные внутри корпуса вейки, создают подобие аэродинамической трубы, в которой происходит разделение рушанки.

Каналы вейки подключены к вентилятору, который приводит­ся в движение электродвигателем посредством клиноременной передачи. Привод питателя осуществляется от этого же электро­двигателя через контрпривод.

Машина работает следующим образом. Рушанка, подлежащая разделению, поступает через рукав в приемную коробку и далее на сита верхнего яруса. На начальном участке сита верхнего яруса имеются отверстия диаметром 6 мм, на конечном участке — 7 мм. Рушанка, попав на сита верхнего яруса, на начальном участке де­лится на проход через сита с отверстиями диаметром 6 мм и соот­ветственно сход. Проход, попадая на поддон с противоположным наклоном по отношению к верхнему ситу, подводится к началу сит среднего яруса. Сход попадает на конечный участок верхнего яруса и делится на сход (частицы крупнее 7 мм, крупная лузга и необрушенные семена), поступающий через рукав в первый канал вейки, и проход (частицы диаметром больше 6 мм и меньше 7 мм, состоящие из лузги и чистого ядра), поступающий через рукав во второй канал вейки.

Сита среднего яруса на начальном участке имеют отверстия диа­метром 4,5 мм, а на конечном участке — 5 мм. Сходом с этих сит идут в третий канал целое мелкое ядро, крупные частицы лузга и ядра. Проход через отверстия диаметром 4,5 мм по поддону с про­тивоположным наклоном скатывается к началу сит нижнего яру­са. Проход через отверстия диаметром 5 мм, состоящий из частиц ядра и лузги среднего размера, направляется в четвертый канал вейки. Сита нижнего яруса на начальном участке имеют отверстия диа­метром 2,5 мм, на конечном участке — 3 мм. Сходом с этих сит идет в пятый канал сечка ядра и лузги. Проход через отверстия диаметром 2,5 мм представляет собой седьмую фракцию, получае­мую в рассеве, которая, минуя вейку, выводится из машины через течку высевочного прохода непосредственно в поток ядра. Проход через отверстия диаметром 3 мм, состоящий из мелких частиц ядра и лузги, направляется в шестой канал вейки. Все шесть фракций по рукавам ссыпаются в питающее устрой­ство вейки и попадают на наклонные полочки. Пересыпаясь с по­лочки на полочку, фракции рушанки подвергаются воздействию воздуха, просасываемого в зазорах между полочками вентилято­ром. Легкие компоненты (преимущественно лузга) в обрабатыва­емых на полочках фракциях увлекаются потоком воздуха внутрь аспирационных каналов, а тяжелые компоненты (ядро, целые се­мена) пересыпаются с полочки на полочку и выводятся в нижнее отверстие корпуса вейки непосредственно перед полочками. На практике четкого отделения лузги на полочках не происхо­дит и вместе с лузгой увлекается часть ядра. Воздушный поток вместе с увлеченными частицами попадает в расширенное сечение канала, где скорость потока воздуха падает. При этом крупная луз­га и часть ядра, увлекаемые потоком воздуха, выпадают в первом конусе. Осевшая в первом конусе смесь частиц называется «пере­веем». Она содержит ядро, поэтому подлежит повторной перера­ботке. Поток воздуха с увлеченными частицами набегает на решет­ку. В этом же сечении расположен второй конус. Здесь в конус выпадает основное количество лузги в результате потери скорости потока в расширенном сечении, а также из-за потери скорости ча­стицами при соударении с элементами решетки. Поток воздуха несколько раз меняет свое направление, огибая две перегородки, что способствует осаждению оставшихся частиц лузги в третьем конусе. Полностью осадить частицы из воздушного потока не уда­ется, и оставшаяся мелкая лузга, пройдя шиберное устройство и вентилятор, выбрасывается в воздухоочистительное устройство.

Рис.7. Схема сит рассева аспирационной семеновейки М2С-50